Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration.
View Article and Find Full Text PDFBackground: Numerous studies have confirmed that the leucine zipper tumor suppressor (LZTS) gene family plays a vital role in modulating transcription and cell cycle control, especially in colorectal cancer. This study aimed to evaluate the potential of leucine zipper tumor suppressor family member 3 (LZTS3) as a marker for COAD.
Methods: Bioinformatics, immunohistochemistry, and Western blotting were applied to assess the expression of LZTS3 in tissues.
The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2022
The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release.
View Article and Find Full Text PDFAims: Calcitonin gene-related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain.
View Article and Find Full Text PDFInterleukin-1β (IL-1β) plays a critical role in the development of neuropathic pain through activation of Schwann cells (SCs) after nerve injury. Here, we applied an RNA sequencing (RNA-seq) approach to identify the effect of IL-1β on gene signatures of a rat SC line (RSC96) and the potential molecular mechanisms underlying the development of neuropathic pain. RNA-seq data demonstrated a total of 57 significantly differentially expressed genes (DEGs) with 35 up-regulated and 22 down-regulated between SCs treated with IL-1β, and control SCs without treatment.
View Article and Find Full Text PDFBackground: Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain.
View Article and Find Full Text PDFBackground: Calcitonin gene-related peptide (CGRP) is possibly involved in recruitment of mucosal mast cells (MCs) in the gut that may be associated with the development of irritable bowel syndrome (IBS), but the role of CGRP on the activation of MCs is still unknown.
Methods: Using RNA sequencing (RNA-seq), we examined differentially expressed genes (DEGs) in mouse MCs following CGRP treatment. The expression of key genes in colonic MCs and their relationship with CGRP-containing fibers were examined by immunofluorescence in chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice.
Calcitonin gene-related peptide (CGRP) is a mediator of microglial activation at the transcriptional level. The involvement of the epigenetic mechanism in this process is largely undefined. Histone deacetylase (HDAC)1/2 are considered important epigenetic regulators of gene expression in activated microglia.
View Article and Find Full Text PDFA previous study showed that a downexpression of protease-activated receptor 4 (PAR4) is associated with the development of esophageal squamous cell carcinoma (ESCC). In this study, we explored the relationship between PAR4 activation and the expression of p16, and elucidated the underlying mechanisms in PAR4 inducing the tumor suppressor role in ESCC. ESCC cell lines (EC109 and TE-1) were treated with PAR4-activating peptide (PAR4-AP).
View Article and Find Full Text PDFBackground: Neuropathic pain is caused by damage to the nervous system, resulting in aberrant pain, which is associated with gene expression changes in the sensory pathway. However, the molecular mechanisms are not fully understood.
Methods: Wistar rats were employed for the establishment of the chronic constriction injury (CCI) models.
Protease-activated receptor 4 (PAR4) is implicated in the inhibition of visceral hyperalgesia. In the present study, the effects of PAR4 activation on visceral hypersensitivity and expression of inflammatory mediators, including interleukin-1 (IL-1), P2RX7 purinergic receptor (P2X7), inducible nitric oxide synthase (iNOS), and tryptase, in mast cells (MCs) were investigated via in vivo and in vitro studies. The numbers of tryptase-positive MCs with extensive PAR4, P2X7, and iNOS expression were increased in the colons of visceral hyperalgesia rats compared with controls.
View Article and Find Full Text PDFExposure to carcinogens of tobacco smoke may result in methylation of protease-activated receptors-4 (PAR4) gene and further induces the loss of PAR4 expression, which is considered to be involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC). Here we employed a TMT-based quantitative proteomic approach to identify PAR4-regulated changes of proteomic profiles in ESCC cells and to identify potentially therapeutic value. A total of 33 proteins were found significantly changed with 15 up-regulated and 18 down-regulated in PAR4-activating peptide (PAR4-AP) treated ESCC cells compared with controls.
View Article and Find Full Text PDFWe previously showed that hepatitis B virus (HBV) X protein (HBx) could promote the trimethylation of histone H3 lysine 9 (H3K9me3) to repress tumor suppressor genes in hepatocellular carcinoma (HCC). In this work, we analyze 23,148 human promoters using ChIP-chip to determine the effects of HBx on H3K9me3 enrichments in hepatoma cells with transfection of HBx-expressing plasmid. Immunohistochemistry for HBx and H3K9me3 was performed in 21 cases of HBV-associated HCC tissues.
View Article and Find Full Text PDFAccumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons.
View Article and Find Full Text PDFProtease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear.
View Article and Find Full Text PDF