Publications by authors named "Shuhei Ueshima"

Non-small cell lung cancer (NSCLC) is one of leading causes of cancer-related mortality worldwide, which harbors various accumulated genetic and epigenetic abnormalities. Histone methyltransferase SETDB1 is a pivotal epigenetic regulator whose focal amplification and upregulation are commonly detected in NSCLC. However, molecular mechanisms underlying the pro-oncogenic function of SETDB1 remain poorly characterized.

View Article and Find Full Text PDF

Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus.

View Article and Find Full Text PDF

In adenoviral virions, the genome is organized into a chromatin-like structure by viral basic core proteins. Consequently viral DNAs must be replicated, chromatinized and packed into progeny virions in infected cells. Although viral DNA replication centers can be visualized by virtue of viral and cellular factors, the spatiotemporal regulation of viral genomes during subsequent steps remains to be elucidated.

View Article and Find Full Text PDF

An important characteristic of the transcription of a ribosomal RNA gene (rDNA) mediated by DNA-dependent RNA polymerase (Pol) I is its stringent species specificity. SL1/TIF-IB is a key complex for species specificity, but its functional complex has not been reconstituted. Here, we established a novel and highly sensitive monitoring system for Pol I transcription to reconstitute the SL1 activity in which a transcript harboring a reporter gene synthesized by Pol I is amplified and converted into translatable mRNA by the influenza virus RNA-dependent RNA polymerase.

View Article and Find Full Text PDF

The nucleolus is the ribosome biogenesis center. The nucleolar structure is disrupted upon entry into mitosis and is formed in early G1 phase. To understand the molecular mechanisms of nucleolar assembly and disassembly, we have studied the mechanism of association between factors involved in pre-ribosome RNA (rRNA) processing and rRNA gene chromatin (r-chromatin).

View Article and Find Full Text PDF

Histone chaperones regulate the density of incorporated histone proteins around DNA transcription sites and therefore constitute an important site-specific regulatory mechanism for the control of gene expression. At present, the targeting mechanism conferring this site specificity is unknown. We previously reported that the histone chaperone B23/nucleophosmin associates with rRNA chromatin (r-chromatin) to stimulate rRNA transcription.

View Article and Find Full Text PDF