Publications by authors named "Shuhei Koshizuka"

The aim of this study was to evaluate whether transplantation of human bone marrow stromal cell-derived Schwann cells (hBMSC-SC) promotes functional recovery after contusive spinal cord injury of adult rats. Human bone marrow stromal cells (hBMSC) were cultured from bone marrow of adult human patients and induced into Schwann cells (hBMSC-SC) in vitro. Schwann cell phenotype was confirmed by immunocytochemistry.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a multipotential protein that acts as a proinflammatory cytokine, a pituitary hormone, and a cell proliferation and migration factor. The objective of this study was to elucidate the role of MIF in spinal cord injury (SCI) using female MIF knockout (KO) mice. Mouse spinal cord compression injury was produced by application of a static load (T8 level, 20 g, 5 min).

View Article and Find Full Text PDF

The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying beta-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group).

View Article and Find Full Text PDF

We compared the effects of hematopoietic stem cell and marrow stromal cell transplantation for spinal cord injury in mice. From green fluorescent protein transgenic mouse bone marrow, lineage-negative, c-kit- and Sca-1-positive cells were sorted as hematopoietic stem cells and plastic-adherent cells were cultured as marrow stromal cells. One week after injury, hematopoietic stem cells or marrow stromal cells were injected into the lesioned site.

View Article and Find Full Text PDF

The aim of this study was to evaluate whether transplantation of Schwann cells derived from bone marrow stromal cells (BMSC-SCs) promotes axonal regeneration and functional recovery in completely transected spinal cord in adult rats. Bone marrow stromal cells (BMSCs) were induced to differentiate into Schwann cells in vitro. A 4-mm segment of rat spinal cord was removed completely at the T7 level.

View Article and Find Full Text PDF

Neurotrophins have been shown to promote axonal regeneration, but the techniques available for delivering neurotrophins have limited effectiveness. The aim of this study was to evaluate the effect of adenovirus vector mediated gene transfer of brain-derived neurotrophic factor (BDNF) on axonal regeneration after spinal cord injury. We prepared adenovirus vectors encoding either beta-galactosidase (AxCALacZ) or BDNF (AxCABDNF).

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a multipotential protein that acts as a pro-inflammatory cytokine, pituitary hormone, immunoregulator, and mitogen. To elucidate function of MIF in spinal cord injury, we examined expression of MIF after compression-induced spinal cord injury using Northern blot analysis, in situ hybridization and immunohistochemistry. The MIF mRNA was up-regulated in injured spinal cord, peaking 3 days after injury shown by Northern blot analysis.

View Article and Find Full Text PDF

Recovery in central nervous system disorders is hindered by the limited ability of the vertebrate central nervous system to regenerate lost cells, replace damaged myelin, and re-establish functional neural connections. Cell transplantation to repair central nervous system disorders is an active area of research, with the goal of reducing functional deficits. Recent animal studies showed that cells of the hematopoietic stem cell (HSC) fraction of bone marrow transdifferentiated into various nonhematopoietic cell lineages.

View Article and Find Full Text PDF