Plant Biotechnol J
February 2025
The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of indica and japonica cultivars in southern China remain unclear.
View Article and Find Full Text PDFRice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare.
View Article and Find Full Text PDFThis study reports the creation of herbicide-resistant rice lines via CRISPR-Cas9-mediated editing of the 3' UTR of OsHPPD. Resistance index calculations revealed that two resistant lines, TS8-2-10 and TS8-8-6, exhibited 4.8-fold and 3.
View Article and Find Full Text PDFType 2B von Willebrand disease (VWD) is characterized by an increased binding affinity of von Willebrand factor (VWF) to platelet glycoprotein Ib. This can lead to clearance of high-molecular-weight (HMW) multimers and thrombocytopenia with a resulting moderate-severe bleeding phenotype. Rondoraptivon pegol (BT200) is a pegylated aptamer binding to the A1 domain of VWF with a novel mechanism of action: it enhances VWF/factor VIII (FVIII) levels by decreasing their clearance.
View Article and Find Full Text PDFRecently, Li-ion capacitors (LICs) have drawn tremendous attention due to their high energy/power density along with long cycle life. Nevertheless, the slow kinetics and stability of the involved anodes as bottleneck barriers always result in the modest properties of devices. The exploration of advanced anodes with both high ionic and electronic conductivities as well as structural stability thus becomes more significant for practical applications of LICs.
View Article and Find Full Text PDFVon Willebrand factor (VWF) and factor VIII (FVIII) circulate in a noncovalent complex in blood and promote primary hemostasis and clotting, respectively. A new VWF A1-domain binding aptamer, BT200, demonstrated good subcutaneous bioavailability and a long half-life in non-human primates. This first-in-human, randomized, placebo-controlled, doubleblind trial tested the hypothesis that BT200 is well tolerated and has favorable pharmacokinetic and pharmacodynamic effects in 112 volunteers.
View Article and Find Full Text PDFThe effect of conventional anti-platelet agents is limited in secondary stroke prevention, and their effects are blunted under high shear stress in the presence of increased levels of circulating von Willebrand factor (VWF). VWF is critically involved in thrombus formation at sites of stenotic extracranial/intracranial arteries. A third generation anti-VWF aptamer (BT200) has been generated which could be useful for secondary stroke prevention.
View Article and Find Full Text PDFThe application of controlled release urea (CRU) has been proposed as a crucial method to reduce the adverse environmental effects induced by conventional urea (CU). Yet, a systematic and quantitative analysis on how CRU affects staple crop production including wheat (Triticum aestivum L.), maize (Zea mays L.
View Article and Find Full Text PDFBackground: von Willebrand factor (VWF) is crucial for arterial thrombosis and its plasma levels are increased in acute coronary syndromes (ACSs). The effects of conventional platelet inhibitors are compromised by elevated VWF under high shear rates. BT200 is a third-generation aptamer that binds and inhibits the A1 domain of human VWF.
View Article and Find Full Text PDFVon Willebrand factor (VWF) plays a major role in arterial thrombosis. Antiplatelet drugs induce only a moderate relative risk reduction after atherothrombosis, and their inhibitory effects are compromised under high shear rates when VWF levels are increased. Therefore, we investigated the ex vivo effects of a third-generation anti-VWF aptamer (BT200) before/after stimulated VWF release.
View Article and Find Full Text PDFBackground: BT200, a pegylated form of the aptamer BT100, inhibits binding of von Willebrand factor (VWF) to platelet glycoprotein GPIb, preventing arterial thrombosis in cynomolgus monkeys. It is being developed for secondary prevention of arterial thrombosis such as stroke or myocardial infarction. Inhibition of thrombogenesis by BT200 is expected to provide a therapeutic benefit.
View Article and Find Full Text PDFA method using multi-mode solid-phase extraction and ultra-high-performance liquid chromatography (UHPLC)-electrospray mass spectrometry was developed to quantify Dicer-substrate small interfering RNA (DsiRNA) directed against the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene transcript in mouse liver tissue. The oligonucleotides were separated into sense and antisense strands using a UHPLC C(18) column with mobile phases containing 1,1,1,3,3,3-hexafluoro-2-propanol in both water (mobile phase A) and methanol (mobile phase B) with triethylamine as the ion pairing agent at a column temperature of 65°C. The lower limits of detection for the sense and antisense strands were ~1 ng/mg.
View Article and Find Full Text PDF