The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM).
View Article and Find Full Text PDFPhotocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for HO and H evolution.
View Article and Find Full Text PDFCreating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common topology to the rare topology can be easily facilitated using a straightforward mixed-solvent strategy. The phase, characterized by an extensively open framework, can be considered a derivative of the phase, generated through the introduction of missing-cluster defects.
View Article and Find Full Text PDFIn-plane ionic conduction over two-dimensional (2D) materials is desirable for flexible electronics. Exfoliating 2D covalent organic frameworks (COFs) towards a few layers is highly anticipated, whereas most examples remain robust via π-stacking against the interlayered dislocation. Herein, we synthesize a phosphine-amine-linked 2D COF by a nucleophilic substitution reaction of phosphazene with amines.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e oxygen reduction reaction (ORR).
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible. More reversible chemistry can improve crystallinity, but this typically yields COFs with poor physicochemical stability and limited application scope. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries are held great promise for next-generation high-energy-density devices; however, polysulfide shuttle and Li-dendrite growth severely hinders their commercial production. Herein, a sulfonate-rich COF (SCOF-2) is designed, synthesized, and used to modify the separator of Li-S batteries, providing a solution for the above challenges. It is found that the SCOF-2 features stronger electronegativity and larger interlayer spacing than that of none/monosulfonate COFs, which can facilitate the Li migration and alleviate the formation of Li-dendrites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2021
Crown ethers are a class of macrocyclic molecules with unique flexible structures but they are rarely integrated in covalent organic frameworks (COFs). To date, employing flexible organic units such as crown ethers to construct COFs with high crystallinity and surface area are still a challenge. In this work, two new COFs with different flexible crown ethers as backbone rather than side chains are synthesized and further employed for alkali metal ions separation.
View Article and Find Full Text PDFWe describe the design and synthesis of two new functionalized covalent organic frameworks, named Cz-COF and Tz-COF, by using monomers containing carbazole and benzobisthiazole as building blocks. The resultant materials possess high crystallinity, permanent porosities as well as abundant heteroatom activated sites in the framework. As solid adsorbents, both COFs exhibit excellent CO uptake (11.
View Article and Find Full Text PDFA porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.
View Article and Find Full Text PDF