Publications by authors named "Shuh Ying Lee"

Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth.

View Article and Find Full Text PDF

The floating-base germanium-tin (GexSnx) heterojunction phototransistor (HPT) is designed and investigated as an efficient optical receiver in the short-wave infrared range. Simulations indicate that as the Sn content increases, the responsivity significantly increases due to a higher absorption coefficient and a larger valence band offset between Ge and GexSnx. GeSn HPTs that incorporated high-quality GeSn film grown by molecular beam epitaxy were fabricated, demonstrating optical response beyond wavelength of 2003 nm.

View Article and Find Full Text PDF

We report the demonstration of a germanium-tin (GeSn) multiple-quantum-well p-i-n photodiode on silicon (Si) substrate for 2 μm-wavelength light detection. Characterization of the photodetector in both direct current (DC) and radio frequency (RF) regimes was performed. At the bias voltage of -1 V, a dark current density of 0.

View Article and Find Full Text PDF

We report the first monolithic integration of InGaAs channel field-effect transistors with InGaAs/GaAs multiple quantum wells (MQWs) lasers on a common platform, achieving a milestone in the path of enabling low power and high speed opto-electronic integrated circuits (OEICs). The III-V layers used for realizing transistors and lasers were grown epitaxially on the Ge substrate using molecular beam epitaxy (MBE). A Si-CMOS compatible process was developed to realize InGaAs n-FETs with subthreshold swing SS of 93 mV/decade, I/I ratio of more than 4 orders of magnitude with very low off-state leakage current, and a peak effective mobility of more than 2000 cm/V·s.

View Article and Find Full Text PDF

We demonstrate that a complementary metal-oxide-semiconductor (CMOS) compatible silicon (Si) surface passivation technique effectively suppress the dark current originating from the mesa sidewall of the Ge(0.95)Sn(0.05) on Si (Ge(0.

View Article and Find Full Text PDF

In this work, we investigated the effects of quantum dot (QD) annealing (as-grown, 600°C-annealed, and 750°C-annealed) on the preliminary performances of 1.3-μm InAs-InGaAs-GaAs quantum dot electroabsorption modulators (QD-EAMs). Both extinction ratio and insertion loss were found to vary inversely with the annealing temperature.

View Article and Find Full Text PDF

We studied the loss compensation of surface plasmon polaritons (SPPs) with InGaAsP quantum wells at telecom wavelength. The quantum wells are buried in the vicinity of a thin Au film. The propagation length of short-range SPPs increases drastically with the gain coefficient of quantum wells, generated by a forward bias.

View Article and Find Full Text PDF

There has been a recent trend to reduce the size of photonic waveguide devices to enable high-density integration in silicon photonic integrated circuits. However, this miniaturization tends to result in increased polarization dependency. Particularly challenging is designing devices based on ring waveguides with small radii, which exacerbates the polarization sensitivity.

View Article and Find Full Text PDF

We present a theoretical and experimental study of high-index-contrast waveguides and basic (passive) devices built from them. Several new results are reported, but to be more comprehensive we also review some of our previous results. We focus on a ridge waveguide, whose strong lateral confinement gives it unique properties fundamentally different from the conventional weakly guiding rib waveguides.

View Article and Find Full Text PDF

We present a unique comparison of ridge-type directional couplers (DC) and multi-mode interferometers (MMI) in terms of their transformational relationship. The two devices are intimately related as the MMI is derived from the DC. We show for the first time the continuous evolution from the two-mode coupling characteristic of DC to the multimode mixing and interference characteristic of MMI, as the DC is structurally transformed into the MMI.

View Article and Find Full Text PDF