Publications by authors named "Shuguo Hou"

Plant receptor kinases (RKs) are critical for transmembrane signalling involved in various biological processes including plant immunity. MALE DISCOVERER1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) is a unique RK that recognizes a family of immunomodulatory peptides called SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) and activates pattern-triggered immunity responses. However, the precise mechanisms underlying SCOOP recognition and activation of MIK2 remain poorly understood.

View Article and Find Full Text PDF

Phosphatidic acid (PA) as a universal second messenger is transiently and rapidly produced upon immune activation in plants. A recent study by Kong et al. elucidated a mechanism for maintaining PA homeostasis via two uncoupled phosphorylation events of DIACYLGLYCEROL KINASE 5 (DGK5) at different phosphorylation sites by two distinct kinases.

View Article and Find Full Text PDF

Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis.

View Article and Find Full Text PDF

The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines.

View Article and Find Full Text PDF

Plasma membrane-resident receptor kinases (RKs) are crucial for plants to sense endogenous and exogenous signals in regulating growth, development, and stress response. Upon perception of ligands by the extracellular domain, RKs are usually activated by auto- and/or trans-phosphorylation of the cytoplasmic kinase domain, which in turn phosphorylates downstream substrates to relay the signaling. Therefore, monitoring ligand-induced in vivo phosphorylation dynamics of RKs and their associated proteins provides mechanistic insight into RK activation and downstream signal transduction.

View Article and Find Full Text PDF

Resistance (R) genes in the Triticeae tribe include not only genes encoding the canonical intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) but also genes encoding kinase fusion proteins (KFPs). Exploring these unconventional KFPs may expand the scope of effector-triggered immunity (ETI) and will have significant implications for crop improvement.

View Article and Find Full Text PDF

Bacterial pathogens deliver effectors into host cells mostly to manipulate signaling and metabolic molecules, thereby subverting host immunity. A recent study by Nomura et al. demonstrates that certain effectors create membrane channels in host cells, enabling bacteria to access water and solutes for multiplication.

View Article and Find Full Text PDF

High temperature induces stomatal opening; however, uncontrolled stomatal opening is dangerous for plants in response to high temperature. We identified a high-temperature sensitive (hts) mutant from the ethyl methane sulfonate (EMS)-induced maize (Zea mays) mutant library that is linked to a single base change in MITOGEN-ACTIVATED PROTEIN KINASE 20 (ZmMPK20). Our data demonstrated that hts mutants exhibit substantially increased stomatal opening and water loss rate, as well as decreased thermotolerance, compared to wild-type plants under high temperature.

View Article and Find Full Text PDF

Plant cell-wall perturbation upon environmental stress triggers adaptive cellular responses mediated by plasma membrane-resident sensors. We discuss a recent study by Bacete et al. showing that THESEUS1 (THE1) regulates plant cell adaptive responses to cell-wall disruption and update the working model for THE1 activation.

View Article and Find Full Text PDF

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens.

View Article and Find Full Text PDF

Plant immunity is initiated by cell surface-localized receptors upon perception of pathogen-derived microbe or pathogen-associated molecular patterns (MAMPs/PAMPs), damage/danger-associated molecular patterns (DAMPs), and phytocytokines. Different patterns activate highly overlapping immune signaling at the early stage but divergent physiological responses at the late stage. Here, we indicate that plant elicitor peptide 1 (Pep1), a well-known DAMP, induces lignin and callose depositions, two types of late immune responses for strengthening the plant cell wall.

View Article and Find Full Text PDF

Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a plant protein called MIK2 helps plants recognize tiny signals from other plants and harmful microbes.
  • This recognition triggers the plant's immune system and changes how its roots grow.
  • The study shows that MIK2 acts like a "sensor" that connects with other proteins to help the plant defend itself against threats.
View Article and Find Full Text PDF

Plants encode a large number of proteases in activating intracellular signaling through proteolytic cleavages of various protein substrates. One type of the substrates is proligands, including peptide hormones, which are perceived by cell surface-resident receptors. The peptide hormones are usually first synthesized as propeptides, and then cleaved by specific proteases for activation.

View Article and Find Full Text PDF

Guard cells shrink in response to drought stress and abscisic acid (ABA) signaling, thereby reducing stomatal aperture. Hydrogen peroxide (HO) is an important signaling molecule acting to induce stomatal closure. As yet, the molecular basis of control over the level of HO in the guard cells remains largely unknown.

View Article and Find Full Text PDF

Various pathogenic species are capable of penetrating plant leaves through stomata on the leaf surface for propagation by absorbing nutrients in plant interiors. Plants have evolved abilities to close stomata to restrict pathogen infections. The model plant () closes stomata when FLAGELLIN SENSING2 (FLS2), a receptor protein localized in the plasma membrane (PM) of stomatal guard cells, detects flagellin, a pathogen-associated molecular pattern (PAMP) derived from the bacterial pathogen .

View Article and Find Full Text PDF

Plant elicitor peptide 1 (Pep1) is a versatile immune modulator that is involved in plant defense against herbivores and pathogens. A recent study (Hander et al., Science, 2019) has uncovered that Arabidopsis thaliana Pep1 is released from the C-terminus of the tonoplast-resident precursor protein, PROPEP1, by Ca-activated metacaspases upon cell membrane rupture in damaged tissues.

View Article and Find Full Text PDF

As a universal process in multicellular organisms, including animals and plants, cells usually emit danger signals when suffering from attacks of microbes and herbivores, or physical damage. These signals, termed as damage-associated molecular patterns (DAMPs), mainly include cell wall or extracellular protein fragments, peptides, nucleotides, and amino acids. Once exposed on cell surfaces, DAMPs are detected by plasma membrane-localized receptors of surrounding cells to regulate immune responses against the invading organisms and promote damage repair.

View Article and Find Full Text PDF

Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical.

View Article and Find Full Text PDF

Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell-wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)-derived peptide and its receptors, HAESA (HAE) and HAESA-LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders.

View Article and Find Full Text PDF

Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown.

View Article and Find Full Text PDF

In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A.

View Article and Find Full Text PDF

Ax21 (activator of Xa21-mediated immunity), a pathogen-associated molecular pattern secreted by Xanthomonas oryzae pv. oryzae, can be perceived by a membrane-located pattern recognition receptor Xa21 and triggered immune responses in rice. An Ax21-derived peptide (17-amino acid) containing a sulfated tyrosine-22 (axY(S)22) is sufficient for Ax21 activity.

View Article and Find Full Text PDF

Plant pathogens usually promote pathogenesis by secreting effector proteins into host plant cells. One of the secreted effectors of Pseudomonas syringae pv. phaseolicola, the causative agent of halo-blight disease in common bean (Phaseolus vulgaris), HopF1, activates effector-triggered immunity (ETI) in a bean cultivar containing R1 resistance gene, but displays virulence function in a bean cultivar without the R1 gene.

View Article and Find Full Text PDF

Two layers of plant immune systems are used by plants to defend against phytopathogens. The first layer is pathogen-associate molecular patterns (PAMPs)-triggered immunity (PTI), which is activated by plant cell-surface pattern recognition receptors (PRRs) upon perception of microbe general elicitors. The second layer is effector-triggered immunity (ETI), which is initiated by specific recognition of pathogen type III secreted effectors (T3SEs) with plant intracellular resistance (R) proteins.

View Article and Find Full Text PDF