The China Sea is faced with a heightened risk of anthropogenic radionuclide contamination, whose provenance, scavenging and migration are imperative to investigate to provide the background and nuclear safety emergency assessment. This study pioneers the measurement of anthropogenic plutonium and neptunium (Pu and Np) concentrations and atom ratios (Pu/Pu and Np/Pu) in sediment cores from the northern Taiwan Strait and the adjacent East China Sea using SF-ICP-MS, exploring their applications and characteristics. Typical vertical profiles confirm that Pu and Np serve as geochronological tools, with the Pu/Pu atom ratio as a fingerprint refining the chronology.
View Article and Find Full Text PDFUnderstanding the impact of meltwater discharge during the final stage of the Laurentide Ice Sheet (LIS) has important implications for predicting sea level rise and climate change. Here we present a high-resolution ice-core isotopic record from the central Tibetan Plateau (TP), where the climate is sensitive to the meltwater forcing, and explore possible signals of the climate response to potential LIS meltwater discharges in the early to mid-Holocene. The record shows four abrupt large fluctuations during the 7-9 ka BP (kiloannum before present), reflecting large shifts of the mid-latitude westerlies and the Indian summer monsoon (ISM) over this period, and they corresponded to possible LIS freshwater events documented in other paleoclimate records.
View Article and Find Full Text PDFOrganophosphate esters (OPEs), extensively used as flame retardants, are widely detected in various regions and environments. The potential toxicity of OPEs has caused great concern in recent years. Based on the global distillation model, the Tien Shan glaciers, such as Urumqi Glacier No.
View Article and Find Full Text PDFThe edge of a monsoon region is usually highly sensitive to climate change. Pakistan, which is located on the northern edge of the Indian monsoon, is highly vulnerable to heavy rainfall and has witnessed several debilitating floods exacerbated by global warming in recent years. However, the mechanisms for the frequent Pakistan floods are yet not fully understood.
View Article and Find Full Text PDFDue to the gradual phase-out of brominated flame retardants, the consumption of organophosphate esters (OPEs) as suitable alternatives has increased in recent years. These compounds could be trapped and accumulate in the widely developed glaciers such as Laohugou Glacier No. 12 in the Tibetan Plateau (TP), as snow is an effective scavenger of organic pollutants in the atmosphere.
View Article and Find Full Text PDFCombustion-derived water vapor (CDV) has significant impacts on urban climate and environment. However, temporal variations of contribution of CDV (CCDV) to urban humidity are unclear due to lack of observations. This study examined the temporal variations of CCDV in Xi'an during winter from 2016 to 2019.
View Article and Find Full Text PDFAtmospheric nitrogen deposition is a unique source of bioavailable nitrogen for ecosystems in remote regions, and has vital impacts on ecological processes. Understanding variations of atmospheric nitrogen deposition in these regions remains challenging due to a lack of observations. Ice cores contain records of nitrogen species of nitrate (NO) and ammonium (NH), hence provide valuable long-term data to study past variations of atmospheric nitrogen deposition.
View Article and Find Full Text PDFAntarctic trace element records could provide important insights into the impact of human activities on the environment over the past few centuries. In this study, we investigated the atmospheric concentrations of 14 representative heavy metals (Al, As, Cd, Co, Cu, Fe, K, Mg, Mn, Pb, Sb, Sr, Tl and V) from 174 samples collected in a 4-m snow pit at Dome Argus (Dome A) on the East Antarctic Plateau, covering the period from 1950 to 2016 A.D.
View Article and Find Full Text PDFAmmonia (NH) emissions could have significant impacts on both ecosystems and human health. Ice cores from the Tibetan Plateau contain information about past ammonium (NH) deposition, which could yield important insights into historical NH emissions in the surrounding source regions as well as long-distance NH aerosol transport via atmospheric circulation. In this paper, we present a high-resolution atmospheric NH deposition record for the period, 1951-2008, reconstructed from the Zangser Kangri (ZK) ice core in the northern Tibetan Plateau.
View Article and Find Full Text PDFUnderstanding the distribution and transport of Uranium is important because it can lead to both chemical and radiological toxicity. This study presents the Uranium concentrations time series from 1964 to 2009 obtained from a 3 m deep snow pit at Dome Argus, East Antarctic Plateau. The data shows that Uranium concentrations vary from 0.
View Article and Find Full Text PDFAntibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) can be identified with metagenomic analyses comparing relatively pristine and human-impacted environments. We collected samples from 3 different environments: glacial soil little affected by anthropogenic activity, deep permafrost dated to 5821 BP (before human antibiotics), and sediment from the Pearl River. Sulfonamides, tetracyclines, and fluoroquinolones were common in the sediment samples.
View Article and Find Full Text PDFWell-defined variations in the enrichments and isotopic compositions of Pb have been observed in snow from Dome Fuji and Dome A in the central East Antarctic Plateau (EAP) over the past few decades. The Pb isotopic fingerprints indicate that the rapid increase in Pb enrichments from the mid-1970s, reaching a peak in ∼1980, is due to the massive use of leaded gasoline in northern South America, especially Brazil. Since then, they show a continuous decline, mostly due to the significant removal of the Pb additives from gasoline in Brazil in the 1980s and, subsequently, in Argentina and Chile in the 1990s.
View Article and Find Full Text PDFMany studies have reported enhanced warming trend on the Tibetan Plateau (TP), even during the warming hiatus period. However, most of these studies are based on instrumental data largely collected from the eastern TP, whereas the temperature trend over the extensive northwestern TP remains uncertain due to few meteorological stations. Here we combined the stable isotopic δ(18)O record of an ice core recovered in 2012 from the Chongce glacier with the δ(18)O records of two other ice cores (i.
View Article and Find Full Text PDFObjective: We studied the difference of bacterial community composition among glacial snow, moraine deposits and glacial soil on Chongce Ice Cap of West Kunlun Mountains.
Methods: Based on traditional culturedependent and 16S rRNA sequence analysis, we analyzed the community structure of bacteria on the level of genus and phylum.
Results: Results show that glacial bacteria were composed of Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes on the phylum level.
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a <110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources.
View Article and Find Full Text PDFThe abundance and community composition of culturable bacteria in four snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica, were investigated through the combination of liquid and solid media and small subunit 16S rRNA sequences. Under aerobic cultivation conditions, the average concentrations of bacterial colonies from each snow core varied from 0.008 to 0.
View Article and Find Full Text PDFA long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ((206)Pb/(207)Pb and (208)Pb/(207)Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature (~1.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2011
Bacterial abundance and diversity in snow of East Rongbuk, Laohugou and Hailuogou glaciers on the Tibetan Plateau were investigated through epifluorescence microscope and denaturing gradient gel electrophoresis. Cell abundance ranged from 4.0 x 10(3) to 290.
View Article and Find Full Text PDFAs, Mo, Sn, and Sb have been determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in 143 depth intervals of high-altitude ice cores from Mt. Everest, covering an 800-year time period from 1205 to 2002 AD. The results clearly demonstrate the long-term historical record of atmospheric transport and deposition of As, Mo, Sn, and Sb that has prevailed at high altitudes in the central Himalayas.
View Article and Find Full Text PDFA series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest.
View Article and Find Full Text PDFThe different depth snow samples were collected from the Miaoergou glacier in East Tianshan Mountains regions, China. Total bacteria counts were established by 4',6- diamino-2-phenylindole (DAPI). Both culture-dependent and culture-independent methods, denaturing gradient gel electrophoresis (DGGE), were used to examine the bacterial diversity and community structure.
View Article and Find Full Text PDF