Publications by authors named "Shugen Ma"

This paper presents a method which avoids the common practice of using a complex coupled snake robot model and performing kinematic analysis for control in cluttered environments. Instead, we introduce a completely decoupled dynamical Bayesian formulation with respect to interacted snake robot links and environmental objects, which requires much lower complexity for efficient and robust control. When a snake robot does not interact with obstacles, it runs by a simple serpenoid controller.

View Article and Find Full Text PDF

This paper presents an in-pipe robot with three underactuated parallelogram crawler modules, which can automatically shift its body shape when encountering obstacles. The shape-shifting movement is achieved by only a single actuator through a simple differential mechanism by only combining a pair of spur gears. It can lead to downsizing, cost reduction, and simplification of control for adaptation to obstacles.

View Article and Find Full Text PDF

Continuum robots have good adaptability in unstructured and complex environments. However, affected by their inherent nature of flexibility and slender structure, there are challenges in high-precision motion and load. Thus, stiffness adjustment for continuum robots has consistently attracted the attention of researchers.

View Article and Find Full Text PDF

This article focuses on addressing three practical issues encountered when applying a data-driven model-free adaptive control (MFAC) approach to mobile robots. The first practical issue lies in a common assumption in MFAC schemes that the sign of all elements in pseudo-partial derivative (PPD) should be constant, while it cannot be satisfied if omnidirectional mobile manipulators (OMMs) move with platform rotation. To solve this problem, a new coordinate frame is introduced, which is crucial for applying MFAC to any mobile robots with rotation.

View Article and Find Full Text PDF

Inchworm-styled locomotion is one of the simplest gaits for mobile robots, which enables easy actuation, effective movement, and strong adaptation in nature. However, an agile inchworm-like robot that realizes versatile locomotion usually requires effective friction force manipulation with a complicated actuation structure and control algorithm. In this study, we embody a friction force controller based on the deformation of the robot body, to realize bidirectional locomotion.

View Article and Find Full Text PDF

This paper proposes an underactuated grippers mechanism that grasps and pulls in different types of objects. These two movements are generated by only a single actuator while two independent actuators are used in conventional grippers. To demonstrate this principle, we have developed two kinds of gripper by different driving systems: one is driven by a DC motor with planetary gear reducers and another is driven by pneumatic actuators with branch tubes as a differential.

View Article and Find Full Text PDF

Active disturbance rejection control (ADRC) is an efficient control technique to accommodate both internal uncertainties and external disturbances. In the typical ADRC framework, however, the design philosophy is to "force" the system dynamics into a double-integral form by an extended state observer (ESO) and then the controller is designed. Especially, the systems' physical structure has been neglected in such a design paradigm.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper introduces a modified control scheme for omnidirectional mobile robots using a structure-improved extended state observer (SESO) to enhance trajectory tracking performance while reducing issues found in traditional extended state observers.
  • - The SESO estimates total disturbances and compensates them in the control system, which features a phase-based nonlinear proportional-differential controller with time-varying gains for better accuracy.
  • - The study confirms the stability of both the SESO and the overall system, demonstrating the effectiveness of the proposed control method through various simulations and experimental tests.
View Article and Find Full Text PDF

In this paper, a framework for analyzing the motion resulting from the interaction between a snake robot and an object is shown. Metrics are derived to study the motion of the object and robot, showing that the addition of passive wheels to the snake robot helps to minimize slippage. However, the passive wheels do not have a significant impact on the force exerted onto the object.

View Article and Find Full Text PDF

For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work.

View Article and Find Full Text PDF

Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long.

View Article and Find Full Text PDF

This paper studies passivity-based trajectory tracking control of an omnidirectional mobile robot. The proposed control design is simple to be implemented in practice, because of an effective exploitation of the structure of robot dynamics. First, the passivity property of the prototype robot is analyzed.

View Article and Find Full Text PDF

A novel eccentric paddle mechanism based on the epicyclic gear mechanism (ePaddle-EGM) has been proposed to enhance the mobility of amphibious robot for multi-terrain tasks with diverse locomotion gaits. This paper presents a brief description for this mechanism. Based on the feature of ePaddle-EGM, a unique non-reciprocating legged gait planning method is proposed.

View Article and Find Full Text PDF

Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented.

View Article and Find Full Text PDF

Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF).

View Article and Find Full Text PDF

An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41.

View Article and Find Full Text PDF

This paper presents a locomotion control based on central pattern generator (CPG) of a snake-like robot. The main point addressed in this paper is a method that produces a smooth transition of the body shape of a snake-like robot. Body shape transition is important for snake-like robot locomotion to adapt to different space widths and also for obstacle avoidance.

View Article and Find Full Text PDF