Himalayan glaciers represent both an important source of water and a major suite of geohazards for inhabitants of their downstream regions. Recent climate change has intersected with local topographic, geomorphic, and glaciological factors to drive complex patterns of glacier thinning, retreat, velocity change, and lake development. In this study, we analyze the long-term variations in surface elevation change and velocity of the glaciers in the Central and Eastern Himalaya using existing and newly generated datasets spanning 1975 to 2018.
View Article and Find Full Text PDFOn 7 February 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. More than 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27 × 10 cubic meters of rock and glacier ice collapsed from the steep north face of Ronti Peak.
View Article and Find Full Text PDFFront Earth Sci (Lausanne)
September 2019
Cascading hazard processes refer to a primary trigger such as heavy rainfall, seismic activity, or snow melt, followed by a chain or web of consequences that can cause subsequent hazards influenced by a complex array of preconditions and vulnerabilities. These interact in multiple ways and can have tremendous impacts on populations proximate to or downstream of these initial triggers. High Mountain Asia (HMA) is extremely vulnerable to cascading hazard processes given the tectonic, geomorphologic, and climatic setting of the region, particularly as it relates to glacial lakes.
View Article and Find Full Text PDFGlacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide.
View Article and Find Full Text PDFSpectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
View Article and Find Full Text PDFIn Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.
View Article and Find Full Text PDFAnalysis of 664 known structures of protein kinase complexes with halogenated ligands revealed 424 short contacts between a halogen atom and a potential protein X-bond acceptor, the topology and geometry of which were analyzed according to the type of a halogen atom (X = Cl, Br, I) and a putative protein X-bond acceptor. Among 236 identified halogen bonds, the most represented ones are directed to backbone carbonyls of the hinge region and may replace the pattern of ATP-like hydrogen bonds. Some halogen-π interactions with either aromatic residues or peptide bonds, that accompany the interaction with the hinge region, may possibly enhance ligand selectivity.
View Article and Find Full Text PDFThe Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes' induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides.
View Article and Find Full Text PDFThymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results.
View Article and Find Full Text PDFThe interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2015
The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC50) and biophysical methods (thermal stability of protein-ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein-ligand complexes shows that the heat of ligand binding (Hbind) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between Hbind and ligand pKa.
View Article and Find Full Text PDFThe 8-azapurines, and their 7-deaza and 9-deaza congeners, represent a unique class of isosteric (isomorphic) analogues of the natural purines, frequently capable of substituting for the latter in many biochemical processes. Particularly interesting is their propensity to exhibit pH-dependent room-temperature fluorescence in aqueous medium, and in non-polar media. We herein review the physico-chemical properties of this class of compounds, with particular emphasis on the fluorescence emission properties of their neutral and/or ionic species, which has led to their widespread use as fluorescent probes in enzymology, including enzymes involved in purine metabolism, agonists/antagonists of adenosine receptors, mechanisms of catalytic RNAs, RNA editing, etc.
View Article and Find Full Text PDFHalogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry.
View Article and Find Full Text PDFBackground: To improve in vitro antiviral activity and selectivity of stavudine (d4T), a range of its bi-functional prodrugs, 5'-O-myristoylated derivatives, have been synthesized.
Methods: Stavudine 5'-O-myristoylated esters were synthesized using modified Parang's procedure. The cytotoxicity and anti-HIV activity was evaluated in the established MT-4 cell line.
Halogenated ligands have been widely developed as potent, and frequently selective, inhibitors of protein kinases (PK). Herein, all structures of protein kinases complexed with a halogenated ligand, identified in the PDB, were analyzed in the context of eventual contribution of halogen bonding to protein-ligand interactions. Global inspection shows that two carbonyl groups of residues located in the hinge region are the most abundant halogen bond acceptors.
View Article and Find Full Text PDFWe herein review experimental and theoretical approaches widely applied to delineation of the differences in substrate specificities between human and parasite phosphoribosyltransferases (PRTases), the latter of which are key targets for treatment of diseases caused by parasites. Standard Molecular Dynamics (MD) simulations have been applied to determine why the human PRTase prefers guanine over xanthine, whereas the Tritrichomonas foetus enzyme exhibits only a slight preference. We analyze this problem with the aid of standard MD simulations, as well as constant-pH MD simulations.
View Article and Find Full Text PDFTo further clarify the role of the individual bromine atoms of 4,5,6,7-tetrabromotriazole (TBBt), a relatively selective inhibitor of protein kinase CK2, we have examined the inhibition (IC(50)) of human CK2α by the two mono-, the four di-, and the two tri- bromobenzotriazoles relative to that of TBBt. Halogenation of the central vicinal C(5)/C(6) atoms proved to be a key factor in enhancing inhibitory activity, in that 5,6-di-Br(2)Bt and 4,5,6-Br(3)Bt were almost as effective inhibitors as TBBt, notwithstanding their marked differences in pK(a) for dissociation of the triazole proton. The decrease in pK(a) on halogenation of the peripheral C(4)/C(7) atoms virtually nullifies the gain due to hydrophobic interactions, and does not lead to a decrease in IC(50).
View Article and Find Full Text PDFIn ongoing studies on the role of the individual bromine atoms of 4,5,6,7-tetrabromobenzotriazole (TBBt) in its relatively selective inhibition of protein kinase CK2α, we have prepared all the possible two mono-, four di-, and two tri-bromobenzotriazoles and determined their physicochemical properties in aqueous medium. They exhibited a general trend of a decrease in solubility with an increase in the number of bromines on the benzene ring, significantly modulated by the pattern of substitution. For a given number of attached bromines, this was directly related to the electronic effects resulting from different sites of substitution, leading to marked variations of pK(a) values for dissociation of the triazole proton.
View Article and Find Full Text PDFAll molecules can be viewed as either discrete or continuous assemblies of electric charges, and electrostatics plays a major role in intermolecular and intramolecular interactions. Moreover, charge distribution within molecules may fluctuate due to the presence of ionizable groups capable of exchanging protons with the environment, leading to pH-dependence of phenomena involving such molecules. Electrostatic aspects of complex shapes and environments of biological molecules, in vitro and in vivo, are relatively well amenable to treatment by Poisson-Boltzmann models, which are attractive in that they possess a clear physical meaning, and can be readily solved by several mathematically sound methods.
View Article and Find Full Text PDFTo examine the relative role of halogen bonding and hydrophobic interactions in the inhibition of human CK2alpha by 4,5,6,7-tetrabromobenzotriazole (TBBt), we have synthesized a series of 5-substituted benzotriazoles (Bt) and the corresponding 5-substituted 4,6,7-tribromobenzotriazoles (Br3Bt) and examined their inhibition of human CK2alpha relative to that of TBBt. The various C(5) substituents differ in size (H and CH3), electronegativity (NH2 and NO2), and hydrophobicity (COOH and Cl). Some substituents were halogen bond donors (Cl, Br), while others were fluorine bond donors (F and CF3).
View Article and Find Full Text PDFThymidylate synthase (TS) was found to be a substrate for both catalytic subunits of human CK2, with phosphorylation by CK2alpha and CK2alpha' characterized by similar K(m) values, 4.6microM and 4.2microM, respectively, but different efficiencies, the apparent turnover number with CK2alpha being 10-fold higher.
View Article and Find Full Text PDF