Publications by authors named "Shuga Manabayeva"

Species of are important ornamental plants used for horticultural purposes in various countries, across Asia, Europe, and North Africa. The present study is the first report on typical features of the complete chloroplast genome sequence of four local and endangered species including , and from Kazakhstan using Illumina sequencing technology. The comparative analyses revealed that the complete genomes of four species were highly conserved in terms of total genome size (152.

View Article and Find Full Text PDF

is a rare and protected species in Kazakhstan, valued for its ecological role in soil stabilization and its ornamental properties. This study presents the first use of micropropagation and phylogenetic analysis for the endemic plant . Seedlings of proved to be more effective than internodes as primary explants for plant micropropagation of in vitro culture, with a multiplication coefficient of 28.

View Article and Find Full Text PDF

In Kazakhstan, the genus is represented by 35 species, 18 of which are listed in the Red Data Book of Kazakhstan and protected by the state. Recent studies of tulip specimens from regions bordering Kazakhstan emphasize the significance of species inventory and report the discovery of several hybrids. In this study, eight tulip species were identified based on morphological characteristics and using DNA barcoding methods.

View Article and Find Full Text PDF

CRISPR/Cas9 technology has become the most efficient method for genome editing in many plant species, including important industrial crops such as potatoes. This study used three target regions (T1, T2, and T3) in gbss exon I, whose sequences were first inserted into the BbsI sites in the appropriate guide RNA (gRNA) vector (pEn-Chimera, pMR203, pMR204, and pMR205), and then localized between the AtU6 promoter and the gRNA scaffold sequence. Expression vectors were constructed by introducing gRNA genes into the pMR287 (pYUCas9Plus) plasmids using the MultiSite Gateway system by attR and attL sites.

View Article and Find Full Text PDF

New breeding technologies have not only revolutionized biological science, but have also been employed to generate transgene-free products. Genome editing is a powerful technology that has been used to modify genomes of several important crops. This review describes the basic mechanisms, advantages and disadvantages of genome editing systems, such as ZFNs, TALENs, and CRISPR/Cas.

View Article and Find Full Text PDF

Potato ( L.) is the third most economically important crop in the world and has a high nutritional value. In this study, the in vitro culture response of four widely grown in Kazakhstan potato cultivars, Astanalyk, Monument Kunaev, Tokhtar, and Aksor, was investigated using stem and leaf explants.

View Article and Find Full Text PDF

Plants offer a unique combination of advantages for the production of valuable recombinant proteins in a relatively short time. For instance, a variety of diagnostic tests have been developed that use recombinant antigens expressed in plants. The envelope glycoprotein gp51 encoded by Bovine leukemia virus (BLV) is one of the essential subunits for viral infectivity.

View Article and Find Full Text PDF

Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts.

View Article and Find Full Text PDF

Traditional virus inoculation of plants involves mechanical rubbing of leaves, whereas in nature viruses like Tomato bushy stunt virus (TBSV) are often infected via the roots. A method was adapted to compare leaf versus root inoculation of Nicotiana benthamiana and tomato with transcripts of wild-type TBSV (wtTBSV), a capsid (Tcp) replacement construct expressing GFP (T-GFP), or mutants not expressing the silencing suppressor P19 (TBSVΔp19). In leaves, T-GFP remained restricted to the cells immediately adjacent to the site of inoculation, unless Tcp was expressed in trans from a Potato virus X vector; while T-GFP inoculation of roots gave green fluorescence in upper tissues in the absence of Tcp.

View Article and Find Full Text PDF