Publications by authors named "Shuen-Fang Lo"

There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type.

View Article and Find Full Text PDF

Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost.

View Article and Find Full Text PDF

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions.

View Article and Find Full Text PDF

Rice is a major staple crop worldwide. However, the occurrence of rice diseases during cultivation poses a significant challenge to achieving optimal yields. Among the major pathogens, species, which cause seedling blight, are of particular concern.

View Article and Find Full Text PDF

In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs).

View Article and Find Full Text PDF

To change the expression of the flanking genes by inserting T-DNA into the genome is commonly used in rice functional gene research. However, whether the expression of a gene of interest is enhanced must be validated experimentally. Consequently, to improve the efficiency of screening activated genes, we established a model to predict gene expression in T-DNA mutants through machine learning methods.

View Article and Find Full Text PDF

Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements.

View Article and Find Full Text PDF

Background: GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted.

Results: Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants.

View Article and Find Full Text PDF

Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance.

View Article and Find Full Text PDF

Most crops cannot germinate underwater. Rice exhibits certain degrees of tolerance to oxygen deficiency for anaerobic germination (AG) and anaerobic seedling development (ASD). Direct rice seeding, whereby seeds are sown into soil rather than transplanting seedlings from the nursery, becomes an increasingly popular cultivation method due to labor shortages and opportunities for sustainable cultivation.

View Article and Find Full Text PDF

T-DNA activation-tagging technology is widely used to study rice gene functions. When T-DNA inserts into genome, the flanking gene expression may be altered using CaMV 35S enhancer, but the affected genes still need to be validated by biological experiment. We have developed the EAT-Rice platform to predict the flanking gene expression of T-DNA insertion site in rice mutants.

View Article and Find Full Text PDF

The rice heterotrimeric G-protein complex, a guanine-nucleotide-dependent on-off switch, mediates vital cellular processes and responses to biotic and abiotic stress. Exchange of bound GDP (resting state) for GTP (active state) is spontaneous in plants including rice and thus there is no need for promoting guanine nucleotide exchange in vivo as a mechanism for regulating the active state of signaling as it is well known for animal G signaling. As such, a master regulator controlling the G-protein activation state is unknown in plants.

View Article and Find Full Text PDF

Ectopic expression of the rice WINDING 1 (WIN1) gene leads to a spiral phenotype only in shoots but not in roots. Rice WIN1 belongs to a specific class of proteins in cereal plants containing a Bric-a-Brac/Tramtrack/Broad (BTB) complex, a non-phototropic hypocotyl 3 (NPH3) domain and a coiled-coil motif. The WIN1 protein is predominantly localized to the plasma membrane, but is also co-localized to plasmodesmata, where it exhibits a punctate pattern.

View Article and Find Full Text PDF
Article Synopsis
  • - Rice (Oryza sativa L.) is a crucial global crop, and as the world population grows, there's a pressing need for sustainable agricultural practices which necessitate better understanding rice genetics via shared research resources.
  • - A significant rice insertional mutant population has been created using the japonica variety Tainung 67, comprising about 93,000 mutant lines, with a majority featuring phenomic and flanking sequence data.
  • - The Taiwan Rice Insertional Mutants Database allows researchers to search for phenotypes and integration sites, facilitating the identification of new genes and insights into the relationships among rice varieties, cultivation locations, and cropping seasons.
View Article and Find Full Text PDF

All grass leaves are strap-shaped with a series of parallel veins running from base to tip, but the distance between each pair of veins, and the cell-types that develop between them, differs depending on whether the plant performs C or C photosynthesis. As part of a multinational effort to introduce C traits into rice to boost crop yield, candidate regulators of C leaf anatomy were previously identified through an analysis of maize leaf transcriptomes. Here we tested the potential of 60 of those candidate genes to alter leaf anatomy in rice.

View Article and Find Full Text PDF

A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors.

View Article and Find Full Text PDF

Rice (Oryza sativa) is one of the most important crops in the world. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources-the relationship between genotype and phenotype-is very low.

View Article and Find Full Text PDF

Communication between source organs (exporters of photoassimilates) and sink organs (importers of fixed carbon) has a pivotal role in carbohydrate assimilation and partitioning during plant growth and development. Plant productivity is enhanced by sink strength and source activity, which are regulated by a complex signaling network encompassing sugars, hormones, and environmental factors. However, key components underlying the signaling pathways that regulate source-sink communication are only now beginning to be discovered.

View Article and Find Full Text PDF
Article Synopsis
  • * Transfer DNA (T-DNA) insertional mutagenesis is a valuable method that allows for efficient gene knockout and activation within rice, aiding in functional genomics research.
  • * The paper emphasizes utilizing T-DNA-tagged rice mutants to improve gene characterization and crop enhancement through advanced genetic approaches, ultimately benefiting rice and other cereals.
View Article and Find Full Text PDF

Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold.

View Article and Find Full Text PDF

A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv.

View Article and Find Full Text PDF

Background: The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and influences reduced plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown.

View Article and Find Full Text PDF

A mutant M47286 with a stunted growth, low fertility and dark-brown phenotype was identified from a T-DNA-tagged rice mutant library. This mutant contained a copy of the T-DNA tag inserted at the location where the expression of two putative tryptophan decarboxylase genes, TDC-1 and TDC-3, were activated. Enzymatic assays of both recombinant proteins showed tryptophan decarboxylase activities that converted tryptophan to tryptamine, which could be converted to serotonin by a constitutively expressed tryptamine 5' hydroxylase (T5H) in rice plants.

View Article and Find Full Text PDF

Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination.

View Article and Find Full Text PDF

Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1-2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: