Publications by authors named "Shue Ling Raung"

Mounting evidence suggests that physical exercise shows health benefits in a range of diseases, including psychiatric disorders. Perinatal opioid exposure produces neurobehavioral abnormality, which includes depression symptoms, in patients and their offspring following chronic use of buprenorphine, a mixed agonist/antagonist with a high affinity to opioid receptors, for pain control. Previously, we demonstrated that prenatal buprenorphine exposure in pregnant Sprague-Dawley rats starting from gestation day 7 and lasting for 14 days caused the development of depression-like phenotypes in pups at postnatal day 21.

View Article and Find Full Text PDF

Japanese encephalitis is a mosquito-borne disease caused by Japanese encephalitis virus (JEV) infection. Although JEV infects and replicates in cells with multiple tissue origins, neurons are the preferential cells for JEV infection. Currently, the identities of JEV cell tropism are largely unclear.

View Article and Find Full Text PDF

Fatal enterovirus type-71 (EV71) cases are associated with central nervous system infection characterized by inflammatory cell infiltration and activation, cytokine overproduction, and neuronal cell death. Although EV71 antigen has been detected in neurons and glia, the molecular mechanisms underlying EV71-associated neuroinflammation and neuronal cell death are not fully understood. Using cultured rodent neural cell models, we found that EV71 infection preferentially caused cell death in neurons but not brain-resident immune cells astrocytes and microglia.

View Article and Find Full Text PDF

Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia.

View Article and Find Full Text PDF

Aims: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered to be one of the most promising candidates in research on treatments for cancer, including renal cell carcinoma (RCC). However, many cells are resistant to TRAIL-induced apoptosis which limits the potential application of TRAIL in cancer therapy. Luteolin, a naturally occurring flavonoid, has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity.

View Article and Find Full Text PDF

Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes.

View Article and Find Full Text PDF

Cellular inflammatory response plays an important role in ischemic brain injury and anti-inflammatory treatments in stroke are beneficial. Dietary supplementation with docosahexaenoic acid (DHA) shows anti-inflammatory and neuroprotective effects against ischemic stroke. However, its effectiveness and its precise modes of neuroprotective action remain incompletely understood.

View Article and Find Full Text PDF

There is a growing interest in the health-promoting effects of natural substances obtained from plants. Although luteolin has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity, the molecular mechanisms have not been well elucidated. This study provides evidence of an alternative target for luteolin and sheds light on the mechanism of its physiological benefits.

View Article and Find Full Text PDF

The substantial activation of microglia in Japanese encephalitis virus (JEV)-induced Japanese encephalitis found in numerous studies demonstrates that the disease pathogenesis involves bystander damage caused by microglia-released mediators. Previously, we reported that microglia synthesized and secreted bioactive mediators with neurotoxic potential into the cultured supernatants in response to JEV infection. In this study, we found that the supernatants of JEV-infected microglia caused MK801-inhibitable neuronal damage in cultured neurons, indicating a potential excitotoxic mechanism.

View Article and Find Full Text PDF

Numerous studies have demonstrated that the disease pathogenesis of Japanese encephalitis involves cytokine-mediated bystander damage. The mechanisms involved in the regulation of Japanese encephalitis virus (JEV)-induced cytokine expression are not well defined but rely mainly on the tight regulation of transcription factor NF-κB. The Src-family tyrosine kinases participate in diversity of cellular signaling and have been demonstrated in JEV-infected cells.

View Article and Find Full Text PDF

Infection with Japanese encephalitis virus (JEV) causes neuroinfection and neuroinflammation characterized by profound neuronal destruction/dysfunction, concomitant microgliosis/astrogliosis, and production of various molecules that initiate the recruitment of immune cells to the sites of infection. Previously, we reported that glial cells expressed RANTES (regulated upon activation, normal T cell expressed and secreted) with chemotactic activity in response to JEV infection. In this study, we further demonstrated that JEV-infected microglia had an additional activity in regulating RANTES production.

View Article and Find Full Text PDF

Microglial activation plays a pivotal role in the pathogenesis of neurodegenerative disease by producing excessive proinflammatory cytokines and nitric oxide (NO). Luteolin, a naturally occurring polyphenolic flavonoid antioxidant, has potent anti-inflammatory and neuroprotective properties both in vitro and in vivo. However, the molecular mechanism of luteolin-mediated immune modulation in microglia is not fully understood.

View Article and Find Full Text PDF

As practice in folk medicine, Graptopetalum paraguayense E. Walther possesses several biological/pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory. We investigated the neuroprotective potential of Graptopetalum paraguayense E.

View Article and Find Full Text PDF

Slippage after reduction of atlantoaxial rotatory fixation (AARF) is usually treated with repeated cervical traction and brace immobilization. To date, no data have been published on the management of muscle spasm during treatment. Here, we describe the case of a 7-year-old girl with AARF for 1 month who visited our hospital for treatment.

View Article and Find Full Text PDF

Aims: Flavonoids possess several biological and pharmacological activities. Quercetin, a naturally occurring flavonoid, has been shown to down-regulate inflammatory responses and provide neuroprotection. However, the mechanisms underlying the anti-inflammatory properties of quercetin are poorly understood.

View Article and Find Full Text PDF

Inflammation is involved in cholestasis-induced hepatic damage. Stearic acid has been shown to possess anti-inflammatory potential. We assessed whether stearic acid has protective effects against cholestasis-related liver damage.

View Article and Find Full Text PDF

Japanese encephalitis is characterized by profound neuronal destruction/dysfunction and concomitant microgliosis/astrogliosis. Although substantial activation of glia is observed in Japanese encephalitis virus (JEV)-induced Japanese encephalitis, the inflammatory responses and consequences of astrocytes and microglial activation after JEV infection are not fully understood. In this study, infection of cultured neurons/glia with JEV caused neuronal death and glial activation, as evidenced by morphological transformation, increased cell proliferation and elevated tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and RANTES (regulated upon activation, normal T-cell expressed and secreted) production.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAIDs) exert anti-tumor action in a variety of cancer cells. However, several treatment side effects such as gastrointestinal injury, cardiovascular toxicity, and acute renal failure limit their clinical use. We found that indomethacin caused renal epithelial cell injury independently of cyclooxygenase inhibition.

View Article and Find Full Text PDF

Evidence suggests that inactivation of cell-damaging mechanisms and/or activation of cell-survival mechanisms may provide effective preventive or therapeutic interventions to reduce cerebral ischemia/reperfusion (I/R) injuries. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid in the central nervous system that has been shown to possess neuroprotective effects. We examined whether different preadministrative protocols of DHA have effects on brain injury after focal cerebral I/R and investigated the potential neuroactive mechanisms involved.

View Article and Find Full Text PDF

Studies have illustrated that fatty acids, especially polyunsaturated fatty acids (PUFA), have a role in regulating oxidative stress via the enhancement of antioxidative defense capacity or the augmentation of oxidative burden. Elevated oxidative stress has been implicated in the pathogenesis of brain injury associated with cerebral ischemia/reperfusion (I/R). The objective of this study was to assess whether treatment with fatty acids after focal cerebral I/R induced by occlusion of the common carotid arteries and the middle cerebral artery has effects on brain injury in a rat model.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a neurotropic virus. The clinically manifestation of JEV-induced encephalitis is characterized by the brain inflammation and neuronal dysfunction and/or destruction. Currently, the cellular signaling molecules that underlie JEV-induced cerebral inflammation and cellular alterations are not well understood.

View Article and Find Full Text PDF

Studies on chemoprevention of cancer are generating increasing interest. The anti-neoplastic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) involves cyclooxygenase (COX)-dependent and COX-independent mechanisms. Evidence suggests that mitogen-activated protein kinases (MAPKs) may mediate apoptotic signaling induced by anti-neoplastic agents.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV), which causes neurological disorders, completes its life cycle and triggers apoptotic cell death in infected cells. Dehydroepiandrosterone (DHEA), an adrenal-derived steroid, has been implicated in protection against neurotoxicity and protection of animals from viral-induced encephalitis, resulting in an increased survival rate of the animals. Currently, the mechanisms underlying the beneficial effects of DHEA against the virus are largely unknown.

View Article and Find Full Text PDF

The cellular signaling molecules that underlie Japanese encephalitis virus (JEV)-induced inflammation and neurotoxicity are not well understood. We examined whether protein tyrosine kinase (PTK) inhibitors play roles in JEV replication and cytopathic effect in neuron/glia cultures. JEV infection caused significant neuronal injury.

View Article and Find Full Text PDF

Tetramethylpyrazine (TMP), which is widely used in the treatment of ischemic stroke by Chinese herbalists, is one of the most important active ingredients of the traditional Chinese herbal medicine, Ligusticum wallichii Franchat (Chung Xiong). However, the mechanism by which TMP protects the brain is still not clear. We examined neuroprotective effects of TMP after transient focal cerebral ischemia using common carotid artery and middle cerebral artery occlusion model in rats and evaluated the involvement of anti-inflammation.

View Article and Find Full Text PDF