Publications by authors named "Shucong Li"

Ambidirectionality, which is the ability of structural elements to move beyond a reference state in two opposite directions, is common in nature. However, conventional soft materials are typically limited to a single, unidirectional deformation unless complex hybrid constructs are used. We exploited the combination of mesogen self-assembly, polymer chain elasticity, and polymerization-induced stress to design liquid crystalline elastomers that exhibit two mesophases: chevron smectic C (cSmC) and smectic A (SmA).

View Article and Find Full Text PDF

Microactuators, capable of executing tasks typically repetitive, hazardous, or impossible for humans, hold great promise across fields such as precision medicine, environmental remediation, and swarm intelligence. However, intricate motions of microactuators normally require high complexity in design, making it increasingly challenging to realize at small scales using existing fabrication techniques. Taking inspiration from the hierarchical-anisotropy principle found in nature, we program liquid crystalline elastomer (LCE) microactuators with multimodal actuation tailored to their molecular, shape, and architectural anisotropies at (sub)nanometer, micrometer, and (sub)millimeter scales, respectively.

View Article and Find Full Text PDF

Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges.

View Article and Find Full Text PDF

Synthetic structures that undergo controlled movement are crucial building blocks for developing new technologies applicable to robotics, healthcare, and sustainable self-regulated materials. Yet, programming motion is nontrivial, and particularly at the microscale it remains a fundamental challenge. At the macroscale, movement can be controlled by conventional electric, pneumatic, or combustion-based machinery.

View Article and Find Full Text PDF

Deciphering the conformations and interactions of peptides in their assemblies offers a basis for guiding the rational design of peptide-assembled materials. Here we report the use of scanning tunneling microscopy (STM), a single-molecule imaging method with a submolecular resolution, to distinguish 18 types of coexisting conformational substates of the β-strand of the 8-37 segment of human islet amyloid polypeptide (hIAPP 8-37). We analyzed the pairwise peptide-peptide interactions in the hIAPP 8-37 assembly and found 82 interconformation interactions within a free energy difference of 3.

View Article and Find Full Text PDF

An understanding of protein conformational ensembles is essential for revealing the underlying mechanisms of interpeptide recognition and association. However, experimentally resolving multiple simultaneously existing conformational substates remains challenging. Here, we report the use of scanning tunneling microscopy (STM) to analyze the conformational substate ensembles of β sheet peptides with a submolecular resolution (in-plane <2.

View Article and Find Full Text PDF

Harvesting largely ignored and wasted electromagnetic (EM) energy released by electronic devices and converting it into direct current (DC) electricity is an attractive strategy not only to reduce EM pollution but also address the ever-increasing energy crisis. Here we report the synthesis of nanoparticle-templated graphene with monodisperse and staggered circular nanopores enabling an EM-heat-DC conversion pathway. We experimentally and theoretically demonstrate that this staggered nanoporous structure alters graphene's electronic and phononic properties by synergistically manipulating its intralayer nanostructures and interlayer interactions.

View Article and Find Full Text PDF

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g.

View Article and Find Full Text PDF

Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation.

View Article and Find Full Text PDF

Nine new cadinane sesquiterpenoids, alanenses A-I (-), were isolated from the leaves of together with three previously reported analogues (-). The structures of these molecules were elucidated by interpretation of spectroscopic and spectrometric data. Absolute configurations were established by the comparison of experimental and calculated ECD data, chemical degradation studies for sugar moieties, and a single-crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

Geometric reconfigurations in cellular structures have recently been exploited to realize adaptive materials with applications in mechanics, optics, and electronics. However, the achievable symmetry breakings and corresponding types of deformation and related functionalities have remained rather limited, mostly due to the fact that the macroscopic geometry of the structures is generally co-aligned with the molecular anisotropy of the constituent material. To address this limitation, cellular microstructures are fabricated out of liquid crystalline elastomers (LCEs) with an arbitrary, user-defined liquid crystal (LC) mesogen orientation encrypted by a weak magnetic field.

View Article and Find Full Text PDF

The fundamental topology of cellular structures-the location, number and connectivity of nodes and compartments-can profoundly affect their acoustic, electrical, chemical, mechanical and optical properties, as well as heat, fluid and particle transport. Approaches that harness swelling, electromagnetic actuation and mechanical instabilities in cellular materials have enabled a variety of interesting wall deformations and compartment shape alterations, but the resulting structures generally preserve the defining connectivity features of the initial topology. Achieving topological transformation presents a distinct challenge for existing strategies: it requires complex reorganization, repacking, and coordinated bending, stretching and folding, particularly around each node, where elastic resistance is highest owing to connectivity.

View Article and Find Full Text PDF

Background: Effects of Saccharomyces cerevisiae fermentation products (SCFP) on rumen microbiota were determined in vitro and in vivo under a high and a depressed pH. The in vitro trial determined the effects of Original XPC and NutriTek (Diamond V, Cedar Rapids, IA) at doses of 1.67 and 2.

View Article and Find Full Text PDF

Photoresponsive liquid crystalline elastomers (LCEs) constitute ideal actuators for soft robots because their light-induced macroscopic shape changes can be harnessed to perform specific articulated motions. Conventional LCEs, however, do not typically exhibit complex modes of bending and twisting necessary to perform sophisticated maneuvers. Here, we model LCE microposts encompassing side-chain mesogens oriented along a magnetically programmed nematic director, and azobenzene cross-linkers, which determine the deformations of illuminated posts.

View Article and Find Full Text PDF

3D printable and reconfigurable liquid crystal elastomers (LCEs) that reversibly shape-morph when cycled above and below their nematic-to-isotropic transition temperature (T ) are created, whose actuated shape can be locked-in via high-temperature UV exposure. By synthesizing LCE-based inks with light-triggerable dynamic bonds, printing can be harnessed to locally program their director alignment and UV light can be used to enable controlled network reconfiguration without requiring an imposed mechanical field. Using this integrated approach, 3D LCEs are constructed in both monolithic and heterogenous layouts that exhibit complex shape changes, and whose transformed shapes could be locked-in on demand.

View Article and Find Full Text PDF

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic-isotropic transition temperature (T) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction.

View Article and Find Full Text PDF

Effects of subacute ruminal acidosis (SARA) challenges on the bacteria in rumen fluid, cecal digesta, and feces of dairy cows were determined using 16S rRNA gene pyrosequencing and real-time quantitative PCR. Six non-lactating Holstein cows with cannulas in the rumen and cecum were used in a 3 × 3 Latin square arrangement of treatments. During the first 3 wk of each experimental period, cows received a control diet containing 70% forages on a dry matter (DM) basis.

View Article and Find Full Text PDF

The effects of a grain-based subacute ruminal acidosis (SARA) challenge on bacteria in the rumen and feces of lactating dairy cows were determined. Six lactating, rumen-cannulated Danish Holstein cows were used in a cross-over study with two periods. Periods included two cows on a control diet and two cows on a SARA challenge.

View Article and Find Full Text PDF

The nature of weaning, considered the most stressful and significant transition experienced by dairy calves, influences the ability of a calf to adapt to the dramatic dietary shift, and thus, can influence the severity of production losses through the weaning transition. However, the effects of various feeding strategies on the development of rumen or fecal microbiota across weaning are yet to be examined. Here we characterized the pre- and post-weaning ruminal and fecal microbiomes of Holstein dairy calves exposed to two different weaning strategies, gradual (step-down) or abrupt.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the effects of two feed supplements on rumen bacterial communities of heifers fed a high grain diet. Six Holstein-Friesian heifers received one of the following dietary treatments according to a Latin square design: no supplement (control, C), 60 g/day of fumarate-malate (organic acid, O) and 100 g/day of polyphenol-essential oil (P). Rumen fluid was analyzed to assess the microbial population using Illumina sequencing and quantitative real time PCR.

View Article and Find Full Text PDF

Background: The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed.

View Article and Find Full Text PDF

Background: The aim of this study was to determine the ability of two feed additives, a fumarate-malate (FM) and a polyphenol-essential oil mixture (PM), in attenuating the drop of ruminal pH and the metabolic and immune response resulting from an excessively high grain diet. Six heifers were used in a 3 × 3 Latin square experiment and fed a low starch (LS) diet for 14 d, followed by a high starch (HS) diet for 8 d (NDF 33.6%, starch 30.

View Article and Find Full Text PDF

Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA.

View Article and Find Full Text PDF