Small-molecule high-throughput screening (HTS) campaigns have frequently been used to identify lead molecules that can alter expression of disease-relevant proteins in cell-based assays. However, most cell-based HTS assays require short compound exposure periods to avoid toxicity and ensure that compounds are stable in media for the duration of the exposure. This limits the ability of HTS assays to detect inhibitors of the synthesis of target proteins with long half-lives, which can often exceed the exposure times utilized in most HTS campaigns.
View Article and Find Full Text PDFCorrection to: J. Biosci. 40(5), December 2015, 863-871 https://doi.
View Article and Find Full Text PDFCopy number mutations implicate excess production of α-synuclein as a possibly causative factor in Parkinson's disease (PD). Using an unbiased screen targeting endogenous gene expression, we discovered that the β2-adrenoreceptor (β2AR) is a regulator of the α-synuclein gene (). β2AR ligands modulate transcription through histone 3 lysine 27 acetylation of its promoter and enhancers.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in "energy-guzzling" neurons, but the components and wiring of the transcriptional circuit through which PGC-1α regulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson's neuropathology and in aging-dependent brain diseases.
View Article and Find Full Text PDFLafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in the affected tissues including the brain. LD can be caused by defects either in the EPM2A gene coding for the laforin protein phosphatase or the NHLRC1 gene coding for the malin ubiquitin ligase. Since the clinical symptoms of LD patients representing the two genetic groups are very similar and since malin is known to interact with laforin, we were curious to examine the possibility that the two proteins regulate each other's function.
View Article and Find Full Text PDFNeurodegenerative disorders are a group of hereditary and sporadic conditions that are characterized by progressive nervous system dysfunctions. These disorders are often associated with neuronal atrophy and are characterized by the presence of intra- or extra-neuronal inclusions in the central or peripheral nervous system. The emerging understanding on these apparently diverse set of disorders suggest that they share a few key pathomechanisms, one of which could be the abnormality in the protein quality control pathways.
View Article and Find Full Text PDFLafora disease (LD), a progressive form of inherited epilepsy, is associated with widespread neurodegeneration and the formation of polyglucosan bodies in the neurons. Laforin, a protein phosphatase, and malin, an E3 ubiquitin ligase, are two of the proteins that are defective in LD. We have shown recently that laforin and malin (referred together as LD proteins) are recruited to aggresome upon proteasomal blockade, possibly to clear misfolded proteins through the ubiquitin-proteasome system (UPS).
View Article and Find Full Text PDFLafora disease (LD), an autosomal recessive neurodegenerative disorder, is characterized by the presence of cytoplasmic polyglucosan inclusions known as Lafora bodies in several tissues including the brain. Laforin, a protein phosphatase, and malin, an ubiquitin ligase, are two of the proteins that are known to be defective in LD. Malin interacts with laforin and promotes its polyubiquitination and degradation.
View Article and Find Full Text PDFLafora's progressive myoclonus epilepsy (Lafora disease: LD) is caused by mutations in the EPM2A or NHLRC1 gene, but cellular mechanisms of the pathogenesis remain unclear. In an attempt to understand and elucidate the disease pathway, we have investigated the global gene expression profile in a mouse model for LD that developed a phenotype similar to that observed in human patients, including presence of Lafora bodies, neurodegeneration and profound neurological disturbances. We found 62 differentially expressed genes in the Epm2a knockout mice brains.
View Article and Find Full Text PDF