Publications by authors named "Shucheng Xu"

Objective: The regulation of food intake is a major research area in the study of obesity, which plays a key role in the development of metabolic syndrome. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behavior, but the deletion of a gene has a long-term effect on neurophysiology. Our understanding of short-term changes such as appetite under physiological conditions is therefore still limited.

View Article and Find Full Text PDF

While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.

View Article and Find Full Text PDF

The role of a calcium-dependent and calmodulin (CaM)-stimulated protein kinase in abscisic acid (ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays). In-gel kinase assays showed that treatments with ABA or H(2)O(2) induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly. Furthermore, we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase II (CaMK II) inhibitor KN-93 or CaM antagonist W-7.

View Article and Find Full Text PDF

The kinetics and mechanism for the reaction of singlet state CH(2) with N(2) have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of the reactions has been calculated by single-point calculations at the CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the B3LYP/6-311+G(3df,2p) level. By comparing the differences in the predicted heats of reaction with the available experimental values, we estimate the uncertainties in the calculated heats of reactions are +/-1.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) cascade has been shown to be important components in stress signal transduction pathway. In the present study, protection of maize seedlings (Zea mays L.) against paraquat-generated oxidative toxicity by abscisic acid (ABA), its association with MAPK and ZmMPK5, a candidate for MAPK were investigated.

View Article and Find Full Text PDF

Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+-dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant.

View Article and Find Full Text PDF

Nitric oxide (NO) is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated.

View Article and Find Full Text PDF

The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves.

View Article and Find Full Text PDF

* The role of nitric oxide (NO) and the relationship between NO, hydrogen peroxide (H(2)O(2)) and mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Both ABA and H(2)O(2) induced increases in the generation of NO in mesophyll cells of maize leaves, and H(2)O(2) was required for the ABA-induced generation of NO. Pretreatment with NO scavenger and nitric oxide synthase (NOS) inhibitor substantially reduced the ABA-induced production of NO, and partly blocked the activation of a 46 kDa MAPK and the expression and the activities of several antioxidant enzymes induced by ABA.

View Article and Find Full Text PDF

The kinetics and mechanism of the reaction of the cyanomidyl radical (HNCN) with the hydroxyl radical (OH) have been investigated by ab initio calculations with rate constants prediction. The single and triplet potential energy surfaces of this reaction have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++G(d,p) levels. The rate constants for various product channels in the temperature range of 300-3000 K are predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories.

View Article and Find Full Text PDF

Rate coefficients of the reaction O(3P)+C2H5OH in the temperature range 782-1410 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO2 at 193 nm with an ArF excimer laser; their concentrations were monitored via atomic resonance absorption. Our data in the range 886-1410 K are new.

View Article and Find Full Text PDF

The kinetics and mechanisms for the unimolecular decomposition reactions of formic acid and oxalic acid have been studied computationally by the high-level G2M(CC1) method and microcanonical RRKM theory. There are two reaction pathways in the decomposition of formic acid: The dehydration process starting from the Z conformer is found to be the dominant, whereas the decarboxylation reaction starting from the E conformer is less competitive. The predicted rate constants for the dehydration and decarboxylation reactions are in good agreement with the experimental data.

View Article and Find Full Text PDF

Photodissociation of nitrobenzene at 193, 248, and 266 nm and o-nitrotoluene at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Fragments corresponding to NO and NO(2) elimination from both nitrobenzene and o-nitrotoluene were observed. The translational energy distributions for the NO elimination channel show bimodal distributions, indicating two dissociation mechanisms involved in the dissociation process.

View Article and Find Full Text PDF

The kinetics and mechanisms for the unimolecular dissociation of nitrobenzene and related association reactions C(6)H(5) + NO(2) and C(6)H(5)O + NO have been studied computationally at the G2M(RCC, MP2) level of theory in conjunction with rate constant prediction with multichannel RRKM calculations. Formation of C(6)H(5) + NO(2) was found to be dominant above 850 K with its branching ratio > 0.78, whereas the formation of C(6)H(5)O + NO via the C(6)H(5)ONO intermediate was found to be competitive at lower temperatures, with its branching ratio increasing from 0.

View Article and Find Full Text PDF

Rate coefficients of the reaction O((3)P) + CH(3)OH in the temperature range of 835-1777 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO(2) with a KrF excimer laser at 248 nm or an ArF excimer laser at 193 nm; their concentrations were monitored via atomic resonance absorption excited by emission from a microwave-discharged mixture of O(2) and He. The rate coefficients determined for the temperature range can be represented by the Arrhenius equation, k(T) = (2.

View Article and Find Full Text PDF