Discharge of treated shale gas wastewater is becoming prevalent in the Sichuan Basin in China, and the resulting potential environmental impacts have raised concern. In this study, the responses of microbial community in the receiving water to discharge of treated shale gas wastewater were assessed during a two-year study period, covering two wet seasons and one dry season. The results showed that the discharge of treated shale gas wastewater had no significant effects on alpha diversity in the two wet seasons, but had significant effects in the dry season after 15 months of discharge.
View Article and Find Full Text PDFThe processes of hydraulic fracturing to extract shale gas generate a large amount of wastewater, and the potential impacts of wastewater discharge after treatment are concerning. In this field study, we investigated the effects of the irrigation of paddy fields for 2 consecutive years by river water that has been influenced by shale gas wastewater discharge on soil physicochemical properties, microbial community structure and function, and rice grain quality. The results showed that conductivity, chloride and sulfate ions in paddy soils downstream of the outfall showed an accumulative trend after two years of irrigation, but these changes occurred on a small scale (<500 m).
View Article and Find Full Text PDFThe potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m).
View Article and Find Full Text PDFAims: How benzene is metabolized by microbes under anoxic conditions is not fully understood. Here, we studied the degradation pathways in a benzene-mineralizing, nitrate-reducing enrichment culture.
Methods And Results: Benzene mineralization was dependent on the presence of nitrate and correlated to the enrichment of a Peptococcaceae phylotype only distantly related to known anaerobic benzene degraders of this family.
Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters.
View Article and Find Full Text PDFAs hydraulic fracturing (HF) practices keep expanding in China, a comparative understanding of biological characteristics of flowback and produced waters (FPW) and sludge in impoundments for FPW reserve will help propose appropriate treatment strategies. Therefore, in this study, the microbial communities and functions in impoundments that collected wastewaters from dozens of wells were characterized. The results showed that microbial richness and diversity were significantly increased in sludge compared with those in FPW.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) pollution as well as the emissions of nitric oxide (NO) and greenhouse gas nitrous oxide (NO) in denitrification processes are currently two environmental issues of great concern. Although bioremediation of PAHs under denitrification is considered a promising approach, denitrification was an important contributor to NO and NO emissions. This long-term study confirmed for the first time that microorganisms could utilize NO to efficiently degrade phenanthrene and fluoranthene.
View Article and Find Full Text PDFBioanalytical equivalents (BEQs) of mixtures and environmental samples are widely used to reflect the potential threat of pollutants in the environment and can be obtained by bioassays or using chemical analysis combined with relative potencies (REPs). In this study, the relationships between bioassay-detected BEQs (Bio-BEQs) and chemically analyzed BEQs (Chem-BEQs) were studied. BEQs and REPs are correlated with effect level and the concentration-response curves of the reference standard and sample.
View Article and Find Full Text PDFIt was revealed that Anammox process promotes the anaerobic degradation of benzene under denitrification. This study investigates the effect of dissimilatory nitrate reduction to ammonium (DNRA) and exogenous ammonium on anaerobic ammonium oxidation bacteria (AnAOB) during the anaerobic degradation of benzene under denitrification. The results indicate that anammox occurs synergistically with organisms using the DNRA pathway, such as Draconibacterium and Ignavibacterium.
View Article and Find Full Text PDFA previous study demonstrated that denitrification synergized with Anammox could accelerate the anaerobic degradation of benzene. The inhibitory effects of benzene, toluene, phenol and benzoate in single and combination on Anammox activity were investigated by short-term batch tests. The results indicated that the inhibition of single compounds on Anammox could be well fitted with the extended non-competitive and Luong inhibition kinetic models.
View Article and Find Full Text PDFTo evaluate the effect of anaerobic ammonium oxidation (ANAMMOX) on benzene degradation under denitrification, a sequencing batch reactor (SBR) under denitrification synergized with ANAMMOX (SBR-DenAna) for benzene degradation was established by inoculating anaerobic ammonium-oxidizing bacteria (AnAOB) into a SBR under denitrification reactor (SBR-Den) for benzene degradation. The average rate of benzene degradation and the maximum first-order kinetic constant in SBR-DenAna were 2.34- and 1.
View Article and Find Full Text PDFPurpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2014
Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations.
View Article and Find Full Text PDF