Development of mesenchymal stem cell-based tissue engineered implantable devices requires prolonged in vitro culture for the development of a three-dimensional implantable device, which leads to phenotypic drift, thus hindering the clinical translation and commercialisation of such approaches. Macromolecular crowding, a biophysical phenomenon based on the principles of excluded-volume effect, dramatically accelerates and increases extracellular matrix deposition during in vitro culture. However, the optimal macromolecular crowder is still elusive.
View Article and Find Full Text PDFTendon injuries continuously rise, and regeneration is not only slow, but also limited due to the poor endogenous healing ability of the tendon tissue. Tissue grafts constitute the clinical gold standard treatment for severe injuries, but inherent limitations drive the field toward tissue engineering approaches to create suitable tissue constructs. Recapitulation of the native microenvironment represent a key challenge for the development of tendon tissue equivalents in vitro that can be further utilized as implantable devices.
View Article and Find Full Text PDFOral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD).
View Article and Find Full Text PDF