In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain.
View Article and Find Full Text PDFBipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way.
View Article and Find Full Text PDFIn the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback.
View Article and Find Full Text PDFNeuronal gap junctions formed by connexin36 (Cx36) and chemical synapses share striking similarities in terms of plasticity. Ca/calmodulin-dependent protein kinase II (CaMKII), an enzyme known to induce memory formation at chemical synapses, has recently been described to potentiate electrical coupling in the retina and several other brain areas phosphorylation of Cx36. The contribution of individual CaMKII isoforms to this process, however, remains unknown.
View Article and Find Full Text PDFIn the mammalian retina, amacrine cells represent the most diverse cell class and are involved in the spatio-temporal processing of visual signals in the inner plexiform layer. They are connected to bipolar, other amacrine and ganglion cells, forming complex networks via electrical and chemical synapses. The small-field A8 amacrine cell was shown to receive non-selective glutamatergic input from OFF and ON cone bipolar cells at its bistratified dendrites in sublamina 1 and 4 of the inner plexiform layer.
View Article and Find Full Text PDFIn the mammalian retina, gap junctions, made of connexin proteins, are found in all neuronal cell types and are important for the transmission of rod photoreceptor signals, spike synchronization, noise reduction, and signal averaging. There are several methods available to assess gap junctional coupling in the retina: simultaneous electrical recordings from two adjacent cells, cut-loading, and intracellular injection of gap junction-permeable tracers. Here, we focus on the latter as it allows precise targeting of the cell of interest and is suitable to assess tracer coupling in a wide variety of retinal cell types, e.
View Article and Find Full Text PDFAII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades.
View Article and Find Full Text PDF