Publications by authors named "Shubham Vashishtha"

Conserved molecular signatures in multidrug-resistant can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the cell division activator protein (StCAP) as a conserved target across variants. From and fluorimetric assessments, we found that StCAP is a DNA-binding protein.

View Article and Find Full Text PDF

Spike (S) protein opening in SARS-CoV-2 controls the accessibility of its receptor binding domains (RBDs) to host receptors and immune recognition. Along the evolution of SARS-CoV-2 to its variants of concern (VOC)-alpha, beta, gamma, delta, and omicron-their S proteins showed a higher propensity to attain open states. Deciphering how mutations in S protein can shape its conformational dynamics will contribute to the understanding of viral host tropism.

View Article and Find Full Text PDF

The emergence of multiple drug resistance and extreme drug resistance pathogens necessitates the continuous evaluation of the pathogenic genome to identify conserved molecular targets and their respective inhibitors. In this study, we mapped the global mutational landscape of Neisseria gonorrhoeae (an intracellular pathogen notoriously known to cause the sexually transmitted disease gonorrhoea). We identified highly variable amino acid positions in the antibiotic target genes like the penA, ponA, 23s rRNA, rpoB, gyrA, parC, mtrR and porB.

View Article and Find Full Text PDF

Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (M. tb), the causative pathogen of tuberculosis (TB) remains the leading cause of death from single infectious agent. Furthermore, its evolution to multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains necessitate de novo identification of drug-targets/candidates or to repurpose existing drugs against known targets through drug repurposing.

View Article and Find Full Text PDF

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins.

View Article and Find Full Text PDF

Background: Visceral Leishmaniasis (VL) is a fatal vector-borne parasitic disorder occurring mainly in tropical and subtropical regions. VL falls under the category of neglected tropical diseases with growing drug resistance and lacking a licensed vaccine. Conventional vaccine synthesis techniques are often very laborious and challenging.

View Article and Find Full Text PDF

The emergence of multiple drug-resistant "super gonorrhoea" complicates the management and treatment of Neisseria gonorrhoeae infections due to the progressive accumulation of mutations in the biological targets of frontline antimicrobials. Continuous evaluation and reporting of newer molecular targets and their inhibitors are necessary. Here, we present l-asparaginase of N.

View Article and Find Full Text PDF

Background: Starch processing requires a combination of enzymes with other chemical and physical processes, which increases cost and time. Enzymes used in these processes have a characteristic (α/β)8 barrel domain architecture, although, show variable activity. Pullulanase type 1 and isoamylase act on α-1-6 linkage, amylase on α-1-4 linkage whereas pullulanase type 2 acts on both α-1-6, and α-1-4 linkages of starch.

View Article and Find Full Text PDF