Cell spreading and motility on an adhesive substrate are driven by the active physical forces generated by the actin cytoskeleton. We have recently shown that coupling curved membrane complexes to protrusive forces, exerted by the actin polymerization that they recruit, provides a mechanism that can give rise to spontaneous membrane shapes and patterns. In the presence of an adhesive substrate, this model was shown to give rise to an emergent motile phenotype, resembling a motile cell.
View Article and Find Full Text PDFPopulations composed of a collection of subpopulations (demes) with random migration between them are quite common occurrences. The emergence and sustenance of cooperation in such a population is a highly researched topic in the evolutionary game theory. If the individuals in every deme are considered to be either cooperators or defectors, the migration dilemma can be envisaged: The cooperators would not want to migrate to a defector-rich deme as they fear of facing exploitation; but without migration, cooperation cannot be established throughout the network of demes.
View Article and Find Full Text PDFThe effect of chaotic dynamical states of agents on the coevolution of cooperation and synchronization in a structured population of the agents remains unexplored. With a view to gaining insights into this problem, we construct a coupled map lattice of the paradigmatic chaotic logistic map by adopting the Watts-Strogatz network algorithm. The map models the agent's chaotic state dynamics.
View Article and Find Full Text PDF