Publications by authors named "Shuanhu Wu"

We propose a new strategy to analyse the periodicity of gene expression profiles using Singular Spectrum Analysis (SSA) and Autoregressive (AR) model based spectral estimation. By combining the advantages of SSA and AR modelling, more periodic genes are extracted in the Plasmodium falciparum data set, compared with the classical Fourier analysis technique. We are able to identify more gene targets for new drug discovery, and by checking against the seven well-known malaria vaccine candidates, we have found five additional genes that warrant further biological verification.

View Article and Find Full Text PDF

The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction.

View Article and Find Full Text PDF

Background: Periodogram analysis of time-series is widespread in biology. A new challenge for analyzing the microarray time series data is to identify genes that are periodically expressed. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, and unevenly sampled time points.

View Article and Find Full Text PDF

Motivation: Promoter prediction is important for the analysis of gene regulations. Although a number of promoter prediction algorithms have been reported in literature, significant improvement in prediction accuracy remains a challenge. In this paper, an effective promoter identification algorithm, which is called PromoterExplorer, is proposed.

View Article and Find Full Text PDF

Cluster analysis of gene expression data from a cDNA microarray is useful for identifying biologically relevant groups of genes. However, finding the natural clusters in the data and estimating the correct number of clusters are still two largely unsolved problems. In this paper, we propose a new clustering framework that is able to address both these problems.

View Article and Find Full Text PDF