Publications by authors named "Shuangyu Tian"

Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation.

View Article and Find Full Text PDF

The design of nano-drug delivery vehicles responsive to tumor microenvironment stimuli has become a crucial aspect in developing cancer therapy in recent years. Among them, the enzyme-responsive nano-drug delivery system is particularly effective, as it utilizes tumor-specific and highly expressed enzymes as precise targets, leading to increased drug release at the target sites, reduced nonspecific release, and improved efficacy while minimizing toxic side effects on normal tissues. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an important reductase associated with cancer and is overexpressed in some cancer cells, particularly in lung and breast cancer.

View Article and Find Full Text PDF

In this study, a novel donor-acceptor conjugated polymer PDPPDTP was designed and synthesized by D-A polymerization using 2,6-di(trimethyltin)--dithieno[3,2-:20,30-]pyrrole as the electron-donating (D) unit and 3,6-bis(5-bromothiophen-2-yl)-2,5-dihexadecylpyrrolo[3,4-]pyrrole-1,4-dione as the electron-accepting (A) unit. The prepared polymer has strong absorption in the near-infrared (NIR) range of 700-900 nm. Moreover, it shows excellent photothermal performance under irradiation at 808 nm.

View Article and Find Full Text PDF