MLN4924 is a selective neddylation inhibitor that has shown great potential in treating several cancer and metabolic diseases, including obesity. However, it remains largely unknown whether MLN4924 has similar effect on non-alcoholic liver disease (NAFLD), which is closely associated with metabolic disorders. Here, we investigated the role of MLN4924 in NAFLD treatment and the underlying mechanism of the action using primary hepatocytes stimulated with free fatty acid, as well as high-fat diet (HFD)-induced NAFLD mouse models.
View Article and Find Full Text PDFWith the ongoing COVID-19 outbreak, healthcare systems across the world have been pushed to the brink. The approach of traditional healthcare systems to disaster preparedness and prevention has demonstrated intrinsic problems, such as failure to detect early the spread of the virus, public hospitals being overwhelmed, a dire shortage of personal protective equipment, and exhaustion of healthcare workers. Consequently, this situation resulted in manpower and resource costs, leading to the widespread and exponential rise of infected cases at the early stage of the epidemic.
View Article and Find Full Text PDFThe synthesis and photochemical characterization of two classes of photoresponsive polyesters are described. These polyesters contain either alkoxyphenacyl or coumarin chromophores embedded along the polymer chain. The alkoxyphenacyl polyesters undergo efficient photoinduced chain scission upon irradiation at 300 nm in solution or as a nanoparticle suspension.
View Article and Find Full Text PDFPotential toxicities of chromophoric or polymeric units of most photoresponsive delivery systems have impacted clinical relevance. Herein, we evaluated the biocompatibility and tolerability of alkoxylphenacyl-based polycarbonates (APPs) as a new class of photoresponsive polymers. The polymers were applied as homopolymer or copolymers of polyethylene glycol (10%, w/w) or polycaprolactone (10%, w/w).
View Article and Find Full Text PDFACS Macro Lett
October 2012
We report the design and development of a new class of alkoxyphenacyl based photodegradable polycarbonates. These polymers incorporate the photoactive moiety in the backbone and, when irradiated at 300 nm, undergo controlled chain scission. Micropatterned thin films of these polymers were fabricated by photolithographic techniques.
View Article and Find Full Text PDF