Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included , , , , , , and down-regulated genes including , , , , , and .
View Article and Find Full Text PDFNeurogastroenterol Motil
December 2020
Background: Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia.
Methods: Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs.
Background: Chronic psychological stress is associated with increased intestinal epithelial permeability and visceral hyperalgesia. Lubiprostone, an agonist for chloride channel-2, promotes secretion and accelerates restoration of injury-induced epithelial barrier dysfunction. The mechanisms underlying how lubiprostone regulates colon epithelial barrier function and visceral hyperalgesia in chronic stress remain unknown.
View Article and Find Full Text PDFIn humans, chronic psychological stress is associated with increased intestinal paracellular permeability and visceral hyperalgesia, which is recapitulated in the chronic intermittent water avoidance stress (WAS) rat model. However, it is unknown whether enhanced visceral pain and permeability are intrinsically linked and correlate. Treatment of rats with lubiprostone during WAS significantly reduced WAS-induced changes in intestinal epithelial paracellular permeability and visceral hyperalgesia in a subpopulation of rats.
View Article and Find Full Text PDFChronic stress and elevated glucocorticoid hormone are associated with decreases in the intestinal epithelial tight junction protein claudin-1 (CLDN1). Human/rat CLDN1 promoters contain glucocorticoid response elements (GREs) and adjacent transcription repressor HES1 binding N-boxes. Notch signaling target HES1 expression was high and glucocorticoid receptor (NR3C1) low at the crypt base and the pattern reversed at the crypt apex.
View Article and Find Full Text PDFStress is known to perturb the microbiome and exacerbate irritable bowel syndrome (IBS) associated symptoms. Characterizing structural and functional changes in the microbiome is necessary to understand how alterations affect the biomolecular environment of the gut in IBS. Repeated water avoidance (WA) stress was used to induce IBS-like symptoms in rats.
View Article and Find Full Text PDFChronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera.
View Article and Find Full Text PDFBackground & Aims: Chronic stress alters the hypothalamic-pituitary-adrenal axis, increases gut motility, and increases the perception of visceral pain. We investigated whether epigenetic mechanisms regulate chronic stress-induced visceral pain in the peripheral nervous systems of rats.
Methods: Male rats were subjected to 1 hour of water avoidance stress each day, or given daily subcutaneous injections of corticosterone, for 10 consecutive days.
Background & Aims: Chronic stress is associated with visceral hyperalgesia in functional gastrointestinal disorders. We investigated whether corticosterone plays a role in chronic psychological stress-induced visceral hyperalgesia.
Methods: Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous corticosterone injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486 and cannabinoid-receptor agonist WIN55,212-2.
Background & Aims: Activation of autoimmune pathways has been implicated as a contributing mechanism to the pathophysiology in some patients with chronic intestinal pseudoobstruction (CIP). In this study we tested the hypothesis that sera from a subpopulation of patients with CIP contain autoantibodies that activate autophagy via a Fas-dependent pathway in cultured human neuroblastoma SH-Sy5Y cells.
Methods: Twenty-five patients with established neurogenic CIP (20 women, 5 men; age range, 21-57 y) were investigated and circulating antineuronal antibodies to enteric neurons were found in 6 (24%) patients.
We reported previously that sera from patients with type 2 diabetes and neuropathy induce autophagy in human neuroblastoma (SH-SY5Y) cells. Here we report that enriched immunoglobulin fractions from a subpopulation of these patients induce autophagy and colocalization with Fas-activated death domain (FADD), a component of the Fas-activated death domain receptor signaling pathway. These effects were replicated by treatment of SY5Y cells with Fas ligand, tumor necrosis factor alpha and an agonist anti-Fas antibody.
View Article and Find Full Text PDFChronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2007
A clearer understanding of the mechanisms underlying the development and progression of diabetic neuropathy is likely to indicate new directions for the treatment of this complication of diabetes. In the present study we investigated the expression of cannabinoid CB(1) receptors in models of diabetic neuropathy. PC12 cells were differentiated into a neuronal phenotype with nerve growth factor (NGF) (50 ng/ml) in varying concentrations of glucose (5.
View Article and Find Full Text PDFThe etiology of diabetic neuropathy is multifactorial and not fully elucidated, although oxidative stress and mitochondrial dysfunction are major factors. We reported previously that complement-inactivated sera from type 2 diabetic patients with neuropathy induce apoptosis in cultured neuronal cells, possibly through an autoimmune immunoglobulin-mediated pathway. Recent evidence supports an emerging role for autophagy in a variety of diseases.
View Article and Find Full Text PDFVoltage-gated sodium channel (Na(v)1) beta2 subunits modulate channel gating, assembly, and cell-surface expression in CNS neurons in vitro and in vivo. beta2 expression increases in sensory neurons after nerve injury, and development of mechanical allodynia in the spared nerve injury model is attenuated in beta2-null mice. Thus, we hypothesized that beta2 modulates electrical excitability in dorsal root ganglion (DRG) neurons in vivo.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2006
Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics.
View Article and Find Full Text PDFDiabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain.
View Article and Find Full Text PDFDiabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4-8 weeks after onset of diabetes.
View Article and Find Full Text PDF