Publications by authors named "Shuangquan Zang"

Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu(CHFO)(HO) exhibited red light emission with high quantum yields of 61 %.

View Article and Find Full Text PDF

We report a two-step approach to fabricate CsPbBr superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the μm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the μm-scale wires bundles and the chiral properties of the sample (g=0.

View Article and Find Full Text PDF

The conversion of methane and carbon dioxide to form C products is of great interest but presents a long-standing grand challenge due to the significant obstacle of activating the inert C-H and C═O bonds as well as forming the C-C bonds. Herein, the consecutive C-C coupling of CH and CO was realized by using heteronuclear metal cations CuTa, and the desorption of HC═C═O molecules was evidenced by state-of-the-art mass spectrometry. The CuTa reaction system is significantly different from the homonuclear metal systems of Cu and Ta.

View Article and Find Full Text PDF

Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions.

View Article and Find Full Text PDF
Article Synopsis
  • Customizing multi-metal site catalysts can enhance control over CO reduction reactions (CORR), but traditional methods are limited and unpredictable.
  • A new bottom-up strategy using covalent organic frameworks (COFs) allows for more controlled synthesis and tuning of active sites by adjusting their electronic structures.
  • The introduction of the La element specifically enhances the performance of dual Cu sites, enabling a shift in the main product from ethylene to methane and showcasing a novel approach to catalyst design.
View Article and Find Full Text PDF

Curvature-induced interfacial electric field effects and local strain engineering offer a powerful approach for optimizing the intrinsic catalytic activity of single-atom catalysts (SACs). Investigations into the surface curvature on SACs are still ongoing, and the impact of the concave surface is often overlooked. In this work, theoretical calculations indicate that curved surfaces, particularly those with concavity, can optimize the electronic structures of single Fe sites and facilitate the reductive release of *OH.

View Article and Find Full Text PDF

While photocatalytic CO reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO photoreduction remain limited. Herein, different coordinated anions (F, Cl, OAc, and NO ) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO), for photocatalytic CO reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts.

View Article and Find Full Text PDF

Constructing catalysts that simultaneously contain single atom/metal nanocluster active sites is a promising strategy to enhance the original catalytic behavior and accelerate the catalysis involving multi-electron reactions or multi-intermediates. Herein, the pyrolysis-free synthetic method is developed to integrate single atoms and nanoclusters towards highly satisfactory catalytic performances for both acidic and alkaline hydrogen electrocatalysis. The controllable pyrolysis-free strategy allows the precise modulation of the active centers, realizing the optimization of the adsorption energy and the regulation of the synergistic active components.

View Article and Find Full Text PDF

The hydroboration of alkynes into vinylboronate esters is a vital transformation, but achieving high chemoselectivity of targeted functional groups and an appreciable turnover number is a considerable challenge. Herein, we develop two dynamically regulating dual-catalytic-site copper clusters (CuNC and CuNC) bearing N-heterocyclic thione ligands that endow CuNC and CuNC catalysts with performance. In particular, the performance of microcrystalline CuNC in hydroboration is characterized by a high turnover number (77786), a high chemoselectivity, high recovery and reusability under mild conditions.

View Article and Find Full Text PDF

The fabrication of hybrid active sites that synergistically contain nanoclusters and single atoms (SAs) is vital for electrocatalysts to achieve excellent activity and durability. Herein, we develop a ligand-assisted pyrolysis strategy using nanoclusters (AuPd(SCHPh)) with alloy cores and protected ligands to build AuPd cluster sites embraced by satellite Pd SAs. In the thermal drive control process, different thermodynamic properties of the alloy atoms and the confinement effects of organic ligands allow for the mild spillover of the single-component metal Pd, resulting in the formation of AuPd alloy nanoclusters tightly encompassed by isolated Pd atoms.

View Article and Find Full Text PDF

Achieving precise and controllable hierarchical self-assembly of functional nanoclusters within crystal lattices to create distinct architectures is of immense significance, yet it creates considerable challenges. Here we successfully synthesized a silver nanowheel Ag, along with its optically pure enantiomers S-/R-Ag Each species possesses an internal nanospace and exhibits host-guest interactions. These structures are constructed from primary building blocks (Ag).

View Article and Find Full Text PDF

The selective synthesis of valuable azo- and azoxyaromatic chemicals via transfer coupling of nitroaromatic compounds has been achieved by fine-tuning the catalyst structure. Here, a direct method to modulate nitrobenzene reduction and selectively alter the product from azobenzene to azoxybenzene by employing the size effect of Au is reported. Au nanoclusters (NCs) with smaller sizes embedded in ZIF-8 controllably converted nitrobenzene into azoxybenzene, while supported Au nanoparticles (NPs) selectively catalyzed nitrobenzene reduction to azobenzene.

View Article and Find Full Text PDF
Article Synopsis
  • * A series of copper-halide clusters was synthesized, with CuCl(BINAP) achieving the best ammonia Faradaic efficiency at 94.0% and a high yield rate of 373 μmol/h/cm.
  • * The study highlights that halogen atoms, particularly chlorine, influence water dissociation on the catalyst, thereby increasing localized hydrogen (H*) levels, which is crucial for efficient nitrate hydrogenation to ammonia.
View Article and Find Full Text PDF

Coinage metal (Au, Ag, Cu) cluster and polyoxometalate (POM) cluster represent two types of subnanometer "artificial atoms" with significant potential in catalysis, sensing, and nanomedicine. While composite clusters combining Ag/Cu clusters with POM have achieved considerable success, the assembly of gold clusters with POM is still lagging. Herein, we first designedly synthesized two cluster structural units: an AuO cluster stabilized by diverse N-heterocyclic carbene (NHC) ligands and an amine-terminated POM linker.

View Article and Find Full Text PDF

Thiolate-protected Cu clusters with well-defined structures and stable low-coordinated Cu species exhibit remarkable potential for the CORR and are ideal model catalysts for establishing structure-electrocatalytic property relationships at the atomic level. However, extant Cu clusters employed in the CORR predominantly yield 2e products. Herein, two model Cu(MMI) and Cu(MMI)(BuS) clusters (MMI=2-mercapto-1-methylimidazole) are prepared to investigate the synergistic effect of Cu and adjacent S sites on the CORR.

View Article and Find Full Text PDF

Precise control over the organic composition is crucial for tailoring the distinctive structures and properties of hybrid metal halides. However, this approach is seldom utilized to develop materials that exhibit stimuli-responsive circularly polarized luminescence (CPL). Herein, we present the synthesis and characterization of enantiomeric hybrid zinc bromides: biprotonated ((R/S)-CHN)ZnBr ((R/S-LH2)ZnBr) and monoprotonated ((R/S)-CHN)ZnBr ((R/S-LH1)ZnBr), derived from the chiral organic amine (R/S)-2,3,4,9-Tetrahydro-1H-carbazol-3-amine ((R/S)-CHN).

View Article and Find Full Text PDF

Detailed photophysical processes of two AuCu clusters with different substituents (-F or -C(CH)) of the thiol ligand were studied in this work. The electronic effect of the substituents led to structural shrinkage, thus enhancing the luminous intensity. The internal conversion (IC) and intersystem crossing (ISC) rates in the AuCu14-C(CH3)3 crystal were slower compared with the AuCu14-F crystal, which was caused by the steric effect.

View Article and Find Full Text PDF
Article Synopsis
  • Chemically modified superatoms are gaining attention in the field of materials science, particularly with studies focused on gold (Au) and its doped variants.
  • The research presents the successful synthesis of silver (Ag) artificial elements, which had not been achieved until now, using nanoclusters with strong ligands.
  • It explores how doping these nanoclusters with varying amounts of Au can influence their optical properties and changes in electron behavior, contributing to the understanding of superatomic clusters' electronic states.
View Article and Find Full Text PDF

Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu(CBHS) (denoted as Cu@CB, where CBHSH = 9,12-(HS)-1,2--carborane) cluster by an achiral carboranylthiolate ligand.

View Article and Find Full Text PDF

Circularly polarized light (CPL) detection is of great significance in various applications such as drug identification, sensing and imaging. Atomically precise chiral metal nanoclusters with intense circular dichroism (CD) signals are promising candidates for CPL detection, which can further facilitate device miniaturization and integration. Herein, we report the preparation of a pair of optically active chiral silver nanoclusters [Ag(R/S-DMA)(dpppy)] (BF) (R/S-Ag) for direct CPL detection.

View Article and Find Full Text PDF

Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence.

View Article and Find Full Text PDF

Green ammonia synthesis through electrocatalytic nitrate reduction reaction (eNORR) can serve as an effective alternative to the traditional energy-intensive Haber-Bosch process. However, achieving high Faradaic efficiency (FE) at industrially relevant current density in neutral medium poses significant challenges in eNORR. Herein, with the guidance of theoretical calculation, a metallic CoNi-terminated catalyst is successfully designed and constructed on copper foam, which achieves an ammonia FE of up to 100% under industrial-level current density and very low overpotential (-0.

View Article and Find Full Text PDF

Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects.

View Article and Find Full Text PDF