The Pancharatnam-Berry (PB) phase has revolutionized the design of metasurfaces, offering a straightforward and robust method for controlling wavefronts of electromagnetic waves. However, traditional metasurfaces have fixed PB phases determined by the orientation of their individual elements. In this study, an innovative structural design and integration scheme is proposed that utilizes vanadium dioxide, a phase-change material, to achieve thermally controlled dynamic PB phase control within the metasurface.
View Article and Find Full Text PDFMetalenses exhibit a substantial potential in replacing traditional optical component as they present a methodology for miniaturization. Lenses with tunable focal lengths can play a key role in various fields with applications in imaging, displays, and augmented and virtual reality devices. Here, we propose an electrically controllable varifocal metalens at the wavelength of 950 nm.
View Article and Find Full Text PDFAs a flexible and compact nanophotonic device, the metasurface exhibits excellent potential in holographic display and optical information encryption. However, most metasurfaces are passive devices due to the limitations of fixed material properties and structural components. Magneto-optical metasurface is a hybrid device that integrates tunable functional material with elaborately designed nanostructures.
View Article and Find Full Text PDFAiry beams are widely used in various optical devices and optical experiments owing to their unique characteristics such as self-acceleration, self-recovery, and non-diffraction. Here we designed and demonstrated a metasurface capable of encoding two phase distributions independently in dual circular polarization channels. We experimentally observed the generated Airy beam arrays loaded on the metasurface in the real and K spaces.
View Article and Find Full Text PDFThe ultimate goal of metasurface research in recent years is to apply metasurface to reality applications and improve the performance compared to its counterpart, namely conventional optical elements with the same function. Inspired by the application of electrically addressing spatial light modulator (EA-SLM) and based on the binary holographic algorithm, here we propose a reconfigurable metadevice integrated with the nematic liquid crystal (NLC). The smart metadevice directly uses the subwavelength antennas as the main contributor to the phase accumulation instead of the NLC layer.
View Article and Find Full Text PDF