Publications by authors named "Shuangqi Fan"

(MPS), caused by (Mhp), is a chronic, airborne respiratory disease that poses a significant threat to the global swine industry. The P97 and P46 proteins are major antigens of Mhp, with the R1 region of P97 possessing full adhesive capability. Studies have shown that the main antigenic regions of Mhp P42 and P65 proteins exhibit strong immunogenicity.

View Article and Find Full Text PDF

Recently, the emergence of HP-PRRSV (Highly Pathogenic porcine reproductive and respiratory syndrome virus) and the exacerbation of mixed infections of PRRSV and PCV have resulted in significant economic losses for the Chinese pig industry. This study collected a total of 226 samples suspected of infection with the aforementioned viruses from diverse pig farms in seven urban districts of central and northern Guangdong Province between 2020 and 2022. The positive rates of PRRSV, PCV2, and PCV3 in the samples were 33.

View Article and Find Full Text PDF

Background: Senecavirus A (SVA) is a newly pathogenic virus correlated with the acute death of piglets and vesicular lesions in pigs. The further prevalence of SVA will cause considerable economic damage to the global pig farming industry. Therefore, rapid and accurate diagnostic tools for SVA are crucial for preventing and controlling the disease.

View Article and Find Full Text PDF
Article Synopsis
  • The classical swine fever virus (CSFV) disrupts serine metabolism, crucial for antiviral immunity, to enhance its replication and evade immune responses.
  • CSFV infection causes the deacetylation of the enzyme PHGDH, leading to its degradation, reduced serine production, and weakened innate immune defenses.
  • The study highlights CSFV's intricate manipulation of immune metabolism, revealing how it inhibits the mitochondria-MAVS-IRF3 pathway, decreases IFN-β production, and boosts viral proliferation.
View Article and Find Full Text PDF

The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity.

View Article and Find Full Text PDF

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses.

View Article and Find Full Text PDF

Unlabelled: Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming.

View Article and Find Full Text PDF

Ferroptosis is a distinctive form of iron-dependent cell death characterized by significant ultrastructural changes in mitochondria. Given the crucial involvement of mitochondria in various cellular processes such as reactive oxygen species production, energy metabolism, redox status, and iron metabolism, mounting evidence suggests a vital role of mitochondria in the regulation and execution of ferroptosis. Furthermore, there exists a strong correlation between ferroptosis and various diseases.

View Article and Find Full Text PDF

CSFV infection in pigs causes persistent high fever, hemorrhagic necrotizing multi-organ inflammation, and high mortality, which seriously threatens the global swine industry. Cell death is an essential immune response of the host against pathogen invasion, and lymphopenia is the most typical clinical feature in the acute phase of CSFV infection, which affects the initial host antiviral immunity. As an "old" virus, CSFV has evolved mechanisms to evade host immune response after a long genetic evolution.

View Article and Find Full Text PDF

Introduction: Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are major intestinal coronaviruses that cause vomiting, diarrhea, dehydration, and mortality in piglets. These viruses coexist and lead to significant economic losses in the swine industry. Virus-like particles (VLPs) have emerged as promising alternatives to conventional inactivated vaccines due to their exceptional safety, efficacy, and ability to provide multi-disease protection with a single dose.

View Article and Find Full Text PDF

Classical swine fever (CSF) is a severe infectious disease caused by the classical swine fever virus (CSFV) that poses significant challenges to the swine industry. α-ketoglutarate dehydrogenase (OGDH), the first rate-limiting enzyme of the tricarboxylic acid (TCA) cycle, catalyzes α-ketoglutarate (α-KG) to succinyl-CoA, playing a crucial role in glycometabolism. Our previous studies showed that CSFV disrupts the TCA cycle, resulting in α-KG accumulation.

View Article and Find Full Text PDF

Over the past 20 years, the Seneca Valley virus (SVV) has emerged in various countries and regions around the world. Infected pigs display symptoms similar to foot-and-mouth disease and other vesicular diseases, causing severe economic losses to affected countries. In recent years, the number of SVV infections has been increasing in Brazil, China, and the United States.

View Article and Find Full Text PDF

The innate immune pathway serves as the first line of defense against viral infections and plays a crucial role in the host's immune response in clearing viruses. Prior research has indicated that the influenza A virus has developed various strategies to avoid host immune responses. Nevertheless, the role of the NS1 protein of the canine influenza virus (CIV) in the innate immune pathway remains unclear.

View Article and Find Full Text PDF

Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses.

View Article and Find Full Text PDF

CSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a pathogen to cause devastating and economically significant diseases in domestic and feral swine. ASFV mainly infects macrophages and monocytes and regulates its replication process by affecting the content of cytokines in the infected cells. There is a limited understanding of host gene expression and differential profiles before and after ASFV infection in susceptible cells.

View Article and Find Full Text PDF

Porcine circovirus type 2 (PCV2) is capable of causing porcine circovirus-associated disease (PCVAD) and is one of the major threats to the global pig industry. The nucleocapsid protein Cap encoded by the PCV2 ORF2 gene is an ideal antigen for the development of PCV2 subunit vaccines, and its N-terminal nuclear localization sequence (NLS) structural domain is essential for the formation of self-assembling VLPs. In the present study, we systematically expressed and characterized full-length PCV2 Cap proteins fused to dominant T and B cell antigenic epitopes and porcine-derived CD154 molecules using baculovirus and found that the Cap proteins fusing epitopes were still capable of forming virus-like particles (VLPs).

View Article and Find Full Text PDF

Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), is a highly contagious and fatal viral disease, posing a significant threat to the swine industry. Heat shock protein 90 kDa alpha class A member 1 (HSP90AA1) is a very conservative chaperone protein that plays an important role in signal transduction and viral proliferation. However, the role of HSP90AA1 in CSFV infection is unknown.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a serious disease affecting the global graziery industry. Once an epidemic occurs, it can lead to economic and trade stagnation. In recent decades, FMD has been effectively controlled and even successfully eradicated in some countries or regions through mandatory vaccination with inactivated foot-and-mouth disease vaccines.

View Article and Find Full Text PDF

The host restriction factor serine incorporator 5 (SERINC5) plays a key role in inhibiting viral activity and has been shown to inhibit classical swine fever virus (CSFV) infection. However, the action of SERINC5 in the interaction between host cells and CSFV remains poorly understood. This study found that SERINC5 represses CSFV-induced autophagy through MAPK1/3-mTOR and AKT-mTOR signalling pathways.

View Article and Find Full Text PDF