Arbuscular mycorrhizal (AM) fungi play a crucial role in the nitrogen uptake and Verticillium wilt resistance of cotton. The absorbed inorganic nitrogen is converted into organic nitrogen through nitrogen assimilation mediated by glutamine synthetase (GS). However, the role of GS in AM symbiosis and Verticillium wilt resistance remains unclear.
View Article and Find Full Text PDFThe cell wall is the major interface for arbuscular mycorrhizal (AM) symbiosis. However, the roles of cell wall proteins and cell wall synthesis in AM symbiosis remain unclear. We reported that a novel wall-associated kinase 13 (GhWAK13) positively regulates AM symbiosis and negatively regulates Verticillium wilt resistance in cotton.
View Article and Find Full Text PDFDrought is a key threat to maize growth and yield. Understanding the mechanism of immature tassel (IT) response to long term drought is of paramount importance. Here, the maize inbred line PH6WC was tested under well-watered (CK) and two water deficit treatments (WD1 and WD2).
View Article and Find Full Text PDFNitric oxide (NO) is an important bioactive molecule that functions in regulating diverse abiotic stresses in plants, whereas its molecular mechanism remains obscure. In this study, treatment with 0.1 mM NO donor (sodium nitroprusside, SNP) significantly alleviated the inhibited growth induced by 15% polyethyleneglycol (PEG)-stimulated water deficiency (WD) for 3 days in maize seedlings, manifested by less decreased plant total fresh weight and dry weight.
View Article and Find Full Text PDFPhotosynthesis is affected by water-deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates excitation-energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using iTRAQ.
View Article and Find Full Text PDF