Objective: To compare the diagnostic value between mNGS and conventional tests in suspected pulmonary tuberculosis (PTB) patients with scarce sputum or with negative sputum etiological test results.
Methods: We enrolled eligible patients admitted to our department from 2018 to 2021. Their bronchoalveolar lavage fluid (BALF) and lung biopsy tissue samples were sent for mNGS and conventional tests.
Uneven lithium plating and low ionic conductivity currently impede the realization of high-capacity rechargeable lithium metal batteries. And the conventional poly(ethylene oxide) (PEO) solid-state electrolytes are unsuitable for high-energy-density Li anode applications due to their low lithium-ion transference number and high reactivity with Li metal, leading to detrimental dendrite formation and potentially hazardous exothermic reactions with the electrolyte. In this study, we employ a supramolecular approach to develop a novel polymer solid-state electrolyte based on poly(vinylidene fluoride) (PVDF) and a novel triblock polymer nanomicrosphere, (poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone), (PCL-PEG-PCL).
View Article and Find Full Text PDFBackground: Nontuberculous mycobacterial (NTM) pulmonary disease (PD) has rapidly increased globally. The characteristics and comparison of rapidly growing mycobacteria PD (RGM-PD) and slowly growing mycobacteria PD (SGM-PD) are still unclear.
Methods: Our study enrolled 31 NTM-PD patients.
Background: To reveal the function of protein tyrosine phosphatase-L1 (PTPL1) in lung adenocarcinoma.
Methods: Lung cancer cell lines were transfected with short hairpin RNA against PTPL1 (shPTPL1 group) or negative control (shmock group). Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to verify the transfection efficacy.
Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality, and so far patients have failed to benefit from therapeutics clinically available. Max interacting protein 1-0 (Mxi1-0) is one of the functional isoforms of Mxi1. Although it also binds to Max, Mxi1-0, unlike other Mxi1 isoforms, cannot antagonize the oncoprotein c-Myc because of its unique proline rich domain (PRD).
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
February 2019
Objective: To study the effects of the overexpression of autophagy-related gene 3 (ATG3) on autophagy and salinomycin-induced apoptosis in breast cancer cells and explore the underlying mechanisms.
Methods: We used the lentivirus approach to establish a breast cancer cell line with stable overexpression of ATG3. Western blotting, immunofluorescence staining and transmission electron microscopy were used to analyze the effect of ATG3 overexpression on autophagy in breast cancer MCF-7 cells.
Nanoscale Res Lett
December 2016
Pure SnO and Y-doped SnO nanobelts were prepared by thermal evaporation at 1350 °C in the presence of Ar carrier gas (30 sccm). The samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), X-ray photoelectron spectrometer (XPS), UV-Vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrum (FTIR). The sensing properties of the devices based on a single SnO nanobelt and Y-doped SnO nanobelt were explored to acetone, ethanol, and ethanediol.
View Article and Find Full Text PDFIntroduction: The aim of the study was to evaluate the expression of CtBP2 in prostate cancer and to determine its relationship with clinicopathologic parameters.
Material And Methods: The expression of CtBP2 in 119 prostate cancer tissues and 41 normal tissues was examined by qPCR and Western blot analysis, and the results were correlated with clinicopathologic parameters.
Results: CtBP2 expression in prostate cancer tissues was higher than that in normal samples.
Eu-doped In₂O₃ nanobelts (Eu-In₂O₃ NBs) and pure In₂O₃ nanobelts (In₂O₃ NBs) are synthesized by the carbon thermal reduction method. Single nanobelt sensors are fabricated via an ion beam deposition system with a mesh-grid mask. The gas-sensing response properties of the Eu-In₂O₃ NB device and its undoped counterpart are investigated with several kinds of gases (including H₂S, CO, NO₂, HCHO, and C₂H₅OH) at different concentrations and different temperatures.
View Article and Find Full Text PDFSingle crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.
View Article and Find Full Text PDF