Publications by authors named "Shuanghong Liu"

Photoactive artificial nanocatalysts that mimic natural photoenergy systems can yield clean and renewable energy. However, their poor photoabsorption capability and disfavored photogenic electron-hole recombination hinder their production. Herein, we designed two nanocatalysts with various microstructures by combining the tailored self-assembly of the meso-tetra(p-hydroxyphenyl) porphine photosensitizer with the growth of titanium dioxide (TiO).

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) photocatalysts have attracted considerable attention because of their strong absorption capacity of visible light and enhanced photogenic carrier separation efficiency. However, the separate production of metal nanoparticles (NPs) and semiconductors limits the photogenic charge transfer. As one of the most promising organic photocatalysts, porphyrin self-assemblies with a long-range ordered structure-enhance electron transfer.

View Article and Find Full Text PDF

The direct Z-scheme photocatalytic system can effectively improve the separation efficiency of photogenerated carriers through the photosynthesis-based photocarrier transport model. In this study, zinc porphyrin-assembled nanorods (ZnTPyP) and WO nanorods' nanorod-on-nanorod heterojunctions (ZnTPyP/WO) were successfully prepared through a simple modified acid-base neutralization micelle-confined assembly method using WO nanorods as the nucleation template and ZnTPyP as building blocks. ZnTPyP achieved a controllable assembly onto WO nanorods through N-W coordination.

View Article and Find Full Text PDF

Antimicrobial peptides are essential to the innate immune defense of the mammal against bacterial infection. However, pathogenic bacteria have evolved multiple strategies to resist and evade antimicrobial peptides, which is vital to bacterial survival and colonization in hosts. PR-39 is a linear porcine antimicrobial peptide containing 39 amino acid residues with a high proline content.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity.

View Article and Find Full Text PDF

Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain.

View Article and Find Full Text PDF

The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed.

View Article and Find Full Text PDF