Publications by authors named "Shuangchen Cong"

Context: Long-circulation (PEGLip), pH-sensitive (PEOzLip), and active targeted liposomes (PEG-TATLip)-loading doxorubicin (DOX) and harmine (HM) were prepared. Their physicochemical properties and antitumor effect were investigated.

Objectives: The aims of the present study were to evaluate synergistic antitumor efficacy.

View Article and Find Full Text PDF

Sirolimus is recognized as a P-glycoprotein (P-gp) substrate with poor water-solubility. To improve its solubility and bioabsorption, self-microemulsifying drug delivery systems (SMEDDS) containing a novel P-gp inhibitor, honokiol, were prepared. The aim of this work was to evaluate the enhanced transport of sirolimus SMEDDS as well as the roles of honokiol.

View Article and Find Full Text PDF

Purpose: The aim of this study was to prepare wheat germ agglutinin (WGA)-modified liposomes encapsulating clarithromycin and to evaluate their in vitro and in vivo efficacy against Methicillin-resistant Staphylococcus aureus (MRSA).

Methods: Physicochemical parameters, minimum inhibitory concentrations, in vitro killing kinetic, cellular uptake, biofilm formation inhibition and pre-formed biofilm destruction, biodistribution, in vivo antibacterial efficacy against MRSA, and phagocytosis into macrophages for liposomes loading clarithromycin were determined.

Results: The minimum inhibitory concentration and the time-kill curve for WGA-modified liposomal clarithromycin were better than those of free and nonmodified liposomal clarithromycin.

View Article and Find Full Text PDF

Objectives: The aims of the present study were to design polymeric micelles loading sirolimus with honokiol to increase drug solubility and to gain an insight into the effect of honokiol on oral transport of P-glycoprotein substrate (P-gp).

Methods: Particle size distribution, encapsulation efficiency, drug-loading content and in-vitro release of sirolimus-loaded micelles with honokiol were determined. Transport of sirolimus-loaded micelles across Caco-2 cell monolayers and jejunum segment of rats were investigated.

View Article and Find Full Text PDF