Tea bud detection technology is of great significance in realizing automated and intelligent plucking of tea buds. This study proposes a lightweight tea bud identification model based on modified Yolov5 to increase the picking accuracy and labor efficiency of intelligent tea bud picking while lowering the deployment pressure of mobile terminals. The following methods are used to make improvements: the backbone network CSPDarknet-53 of YOLOv5 is replaced with the EfficientNetV2 feature extraction network to reduce the number of parameters and floating-point operations of the model; the neck network of YOLOv5, the Ghost module is introduced to construct the ghost convolution and C3ghost module to further reduce the number of parameters and floating-point operations of the model; replacing the upsampling module of the neck network with the CARAFE upsampling module can aggregate the contextual tea bud feature information within a larger sensory field and improve the mean average precision of the model in detecting tea buds.
View Article and Find Full Text PDFBackground: Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma.
Methods: By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated.
Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca.
View Article and Find Full Text PDFIn this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (HO) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV).
View Article and Find Full Text PDFTrichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear.
View Article and Find Full Text PDFTrichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFCadmium (Cd) is a toxic heavy metal, increasingly accumulating in the environment and its presence in various environmental compartments represents a significant risk to human health via the food chain. Epigallocatechin-3-Gallate (EGCG) is a prominent secondary metabolite, which can safeguard plants from biotic and abiotic stress. However, the role of EGCG in flavonoid synthesis, nutrient acquisition and reactive oxygen species (ROS) metabolism under Cd stress remains unclear.
View Article and Find Full Text PDFPlant Physiol Biochem
February 2024
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways.
View Article and Find Full Text PDFCrop evapotranspiration is a key parameter influencing water-saving irrigation and water resources management of agriculture. However, current models for estimating maize evapotranspiration primarily rely on meteorological data and empirical coefficients, and the estimated evapotranspiration contains uncertainties. In this study, the evapotranspiration data of summer maize were collected from typical stations in Northern China (Yucheng Station), and a back-propagation neural network (BP) model for predicting maize evapotranspiration was constructed based on meteorological data, soil data, and crop data.
View Article and Find Full Text PDFChromium (Cr) is a toxic heavy metal for both animals and plants. The multifunctional signaling molecule melatonin can confer plant tolerance to heavy metal stress, but the mechanisms remain largely unknown. Here, we unveiled the critical role of the secondary metabolite anthocyanin in melatonin-induced Cr stress tolerance.
View Article and Find Full Text PDFChromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops.
View Article and Find Full Text PDFMelatonin (MT) plays a number of key roles in regulating plant growth and secondary metabolite accumulation. is an important traditional Chinese herbal medicinal plant which is used for the treatment of lymph, goiter, and mastitis. However, the effect of MT on the yield and medicinal component content of remains still unclear.
View Article and Find Full Text PDFwilt, caused by f. sp. (Fo), is a severe soil-borne disease affecting cucumber production worldwide, particularly under monocropping in greenhouses.
View Article and Find Full Text PDFPesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants.
View Article and Find Full Text PDFBackground: Recent studies showed that HOXA1 can promote or suppress the transcription of target genes via binding to their promoter region, therefore regulating the development and progression of various cancers. However, the biological function of HOXA1 in bladder cancer (Bca) remains unknown.
Methods: qRT-PCR and Western blot assay was performed to measure the mRNA protein level of HOXA1 in Bca cells.
Heavy metal pollution not only decreases crop yield and quality, but also affects human health via the food chain. Ubiquitination-dependent protein degradation is involved in plant growth, development, and environmental interaction, but the functions of ubiquitin-ligase (E3) genes are largely unknown in tomato (Solanum lycopersicum L.).
View Article and Find Full Text PDFRising atmospheric carbon dioxide, an important driver of climate change, has multifarious effects on crop yields and quality. Despite tremendous progress in understanding the mechanisms of plant responses to elevated CO, only a few studies have examined the CO-enrichment effects on tea plants. Tea [ (L.
View Article and Find Full Text PDFMelatonin is a multifunctional molecule that confers tolerance to a number of biotic and abiotic stresses in plants. However, the role of melatonin in plant response to and the interaction with arbuscular mycorrhizal fungi (AMF) remain unclear. Here we show that exogenous melatonin application promoted the AMF colonization rate in cucumber roots, which potentially suppressed Fusarium wilt as evidenced by a decreased disease index and an increased control effect.
View Article and Find Full Text PDFBisphenol A (BPA) is an emerging organic pollutant, widely distributed in environment. Plants can uptake and metabolize BPA, but BPA accumulation induces phytotoxicity. In this study, we administered dopamine, a kind of catecholamines with strong antioxidative potential, to unveil its role in cucumber tolerance to BPA stress.
View Article and Find Full Text PDFPhoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression.
View Article and Find Full Text PDFPlant survival in the terrestrial ecosystem is influenced by both beneficial and harmful microbes. spp. are a group of filamentous fungi that promote plant growth and resistance to harmful microbes.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2019
Potato cold-induced sweetening (CIS) is a major drawback restricting potato process industry. Starch degradation and sucrose decomposition are considered to be the key pathways in potato CIS. Our previous study showed that the RING finger gene SbRFP1 could slow down starch degradation and the accumulation of reducing sugars (RS) through inhibiting amylase and invertase activity in cold-stored tubers.
View Article and Find Full Text PDFDespite a range of initiatives to reduce global carbon emission, the mean global temperature is increasing due to climate change. Since rising temperatures pose a serious threat of food insecurity, it is important to further explore important biological molecules that can confer thermotolerance to plants. Recently, melatonin has emerged as a universal abiotic stress regulator that can enhance plant tolerance to high temperature.
View Article and Find Full Text PDFMycorrhizal inoculation stimulates growth, photosynthesis and nutrient uptake in a wide range of host plants. However, the ultimate effects of arbuscular mycorrhyzal (AM) symbiosis vary with the plants and fungal species involved in the association. Therefore, identification of the appropriate combinations of AM fungi (AMF) that interact synergistically to improve their benefits is of high significance.
View Article and Find Full Text PDFUbiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS) or reactive nitrogen species (RNS) metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene (Adi3 Binding E3 Ligase) was introduced into tomato line Ailsa Craig via -mediated method.
View Article and Find Full Text PDF