Liver fibrosis is caused by liver injury induced by a number of chronic liver diseases, including schistosome infection, hepatitis infection, metabolic disease, alcoholism and cholestasis. The tissue damage occurring after injury or inflammation of the liver is a reversible lesion; however, liver fibrosis has become a worldwide problem and poses a threat to human health. The development of an effective drug for the prevention and treatment of liver fibrosis is ongoing and uses information from different occurrences of liver fibrosis.
View Article and Find Full Text PDFThe aim of this study was to explore the changes in the urine metabolic spectrum in rats with the early stage of liver fibrosis using gas chromatography-time of flight/mass spectrometry (GC-TOF/MS), try to search for potential biomarkers and elucidate the probably metabonomic pathogenesis. The early stage of liver fibrosis was established with a single subcutaneous injection of carbon tetrachloride twice each week for 4 weeks continuously. At the end of the experiment, GC-TOF/MS technology with multivariate statistical approaches such as principal component analysis, partial least squares-discriminant analysis and orthogonal partial least squares-discriminant analysis was used to analyze the changes in the metabolic spectrum trajectory and identify potential biomarkers.
View Article and Find Full Text PDFBackground And Aim: Chronic glomerulonephritis (CGN) is a primary glomerular disease that is related to immune-mediated inflammatory diseases. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine for treatment of CGN, but the comprehensive molecular mechanism underlying this therapeutic effect is not clear to date. The aim of this study was to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats.
View Article and Find Full Text PDFBackground: Chronic glomerulonephritis (CGN) is the most common form of the glomerular disease with unclear molecular mechanisms, which related to immune-mediated inflammatory diseases. The aim of this study was to characterize differentially expressed genes in the normal and adriamycin-induced CGN rats by microarray analysis, and to determine the potential molecular mechanisms of CGN pathogenesis.
Methods: For the gene expression analysis, fresh glomerular tissues from both normal and adriamycin treated rats (n=4, respectively) were collected.