Centromere protein U (CENPU) is a novel transcriptional repressor that is associated with different types of cancer. However, its function in breast cancer is poorly understood. In the present study, it was identified that CENPU was highly expressed in breast cancer tissues compared with expression in normal breast tissues (P=0.
View Article and Find Full Text PDFBackground And Aims: Matrix metalloproteinase-9 (MMP-9) -1562 C/T gene polymorphism has been identified as a susceptible gene for multiple autoimmune diseases (ADs), but studies are inconsistent. The aim of this study was to assess the overall association between MMP-9 gene polymorphism and multiple ADs using a meta-analysis.
Methods: Databases of Pubmed, Embase and Web of Science updated to March 1, 2016 were retrieved.
Three μ-O bridged Dy squares, {[Dy(μ-O)(HL)(HO)](NO)(OH)}·2HO·2CHOH (1), [Dy(μ-O)(HL)(SCN)]·2HO·4CHOH (2) and [Dy(μ-O)(HL)(SCN)]·6HO (3) were assembled by using a Schiff base ligand and its dimerized and reduced congener, respectively. These complexes share a similar μ-O bridged Dy core, while, both the coordination geometry and metal-ligand interactions are slightly changed upon the modulation of the ligands, resulting in distinct single-molecular magnetic (SMM) and single-molecular toroic (SMT) properties. In complex 1, the Schiff base ligands are in an antiparallel fashion and all Dy ions are in a similar coordination geometry, realizing the toroidal arrangement of magnetic moments.
View Article and Find Full Text PDFThe roles of Silent mating type information regulation 2 homolog 1 (SIRT1) and High mobility group A1 (HMGA1) in human diseases have been extensively studied separately; however, to the best of our knowledge, the current study is the first to report on their interrelationship in lung cancer. The association of SIRT1 and HMGA1 in non-small cell lung cancer (NSCLC) was investigated by evaluating their expression and prognostic significance in 260 patients with NSCLC using immunohistochemistry. SIRT1 and HMGA1 expression were found to be significantly correlated with each other (P<0.
View Article and Find Full Text PDFThe synthesis, structural characterization, and magnetic properties of four related heterometallic complexes with formulas [Dy(III)2Co(II)(C7H5O2)8]·6H2O (1), [Dy(III)2Ni(II)(C7H5O2)8]·(C7H6O2)2 (2), Tb(III)2Co(II)(C7H5O2)8 (3), and Dy(III)2Cd(II)(C7H5O2)8 (4) were reported. Each of complexes has a perfectly linear arrangement of the metal ions with two terminal Ln(III) (Ln(III) = Dy(III), Tb(III)) ions and one central M(II) (M(II) = Co(II), Ni(II), Cd(II)) ion. It was found that 1-3 displayed obvious magnetic interactions between the spin carriers according to the direct current (dc) susceptibility measurements.
View Article and Find Full Text PDFA series of one dimensional chain complexes [Ln(hfac)3]2·[Cu(hfac)2]2·4(3pyvd)·n-C7H16 (Ln = Gd(1), Tb(2), Dy(3)) containing 2p, 3d and 4f spin carriers have been successfully synthesized and magnetically characterized where the verdazyl radicals represent the bridge linking copper(II) and lanthanide(III) ions. Rough estimation of magnetic behaviors of complex 1 revealed that the coupling between a Gd(III) ion and a radical is weakly ferromagnetic, while alternating-current susceptibilities of complexes 2 and 3 suggest no slow magnetic relaxations exist at low temperature.
View Article and Find Full Text PDFThe initial employment of a triketone ligand in 4f coordination chemistry afforded a series of dinuclear complexes. Magnetic studies revealed that an antiferromagnetic interaction exists in a digadolinium(III) compound, while a dysprosium(III) constructed complex exhibits single-molecule magnet (SMM) behaviour at low temperatures with an energy barrier of 86.8 K.
View Article and Find Full Text PDFThe reaction of Mn(OAc)2·4H2O and Ln(NO3)3·6H2O with N-(2-aminopropyl)-2-hydroxybenzamide and salicylic aldehyde in methanol/methylene dichloride produces yellow crystals of Ln2Mn(C7H5O2)8 (Ln = Gd (), Tb (), Dy (), Ho () and Er ()), in the presence of triethylamine. Three metal ions are connected by six μ2-phenolate oxygen atoms of six salicylic aldehyde ligands, resulting in perfect linear [Ln(III)-Mn(II)-Ln(III)] structures. Magnetic studies of these complexes have been performed and AC susceptibility measurements show the presence of a temperature-dependent out-of-phase ac signal for complexes and indicating single-molecule magnet (SMM) behavior.
View Article and Find Full Text PDFThree pairs of homochiral mononuclear lanthanide complexes, with the general formula [LnH4LRRRRRR/SSSSSS(SCN)2](SCN)2·xCH3OH·yH2O(Ln = Dy (R/S-Dy1), Ho (R/S-Ho1) and Er (R/S-Er1)), have been obtained via self-assembly between chiral macrocyclic ligands and the respective thiocyanates, all of which show a saddle-type conformation with seven-coordinated metal ions. Magnetic measurements revealed that the Dy complex shows field-induced single-ion magnet behaviour, which is rarely reported in a seven-coordinated lanthanide-based SIM encapsulated in a macrocyclic ligand. The absolute configuration of all enantiomers was determined by single crystal X-ray crystallography and confirmed by electronic CD and VCD spectra.
View Article and Find Full Text PDFThree pairs of enantiopure chiral triangular Ln3 clusters, [Ln3LRRRRRR/SSSSSS(μ3-OH)2(H2O)2(SCN)4]⋅xCH3OH⋅yH2O (R-Dy3, Ln=Dy, x=6, y=0; S-Dy3, Ln=Dy, x=6, y=1; R-Ho3, Ln=Ho, x=6, y=1; S-Ho3, Ln=Ho, x=6, y=1; R-Er3, Ln=Er, x=6, y=0; S-Er3, Ln=Er, x=6, y=1), have been successfully synthesized by a rational enantioselective synthetic strategy. The core of triangular Ln3 is bound in the central N6O3 of the macrocyclic ligand, and the coordination spheres of Ln ions are completed by four SCN(-) anions and two H2O molecules in axial positions of the macrocycle. The circular dichroism (CD) and vibrational circular dichroism (VCD) spectra of the enantiomers demonstrate that the chirality is successfully transferred from the ligands to the resulting Ln3 clusters.
View Article and Find Full Text PDFSingle-molecule toroics (SMTs) are defined, by analogy with single-molecule magnets, as bistable molecules with a toroidal magnetic state, and seem to be most promising for future applications in quantum computing and information storage and use as multiferroic materials with magnetoelectric effect. As an interdisciplinary research area that spans chemistry, physics and material sciences, synthetic chemists have produced systems suitable for detailed study by physicists and materials scientists, while ab initio calculations have been playing a major role in the detection of toroidal magnetization and the advancement of this field. In this tutorial review, we demonstrate the research developed in the fascinating and challenging field of molecular-based SMTs with particular focus on how recent studies tend to address the issue of toroidal arrangement of the magnetic moment in these systems.
View Article and Find Full Text PDFThe magnetic relaxation dynamics of low-coordinate Dy(III) and Er(III) complexes, namely three-coordinate ones with an equatorially coordinated triangle geometry and five-coordinate ones with a trigonal bipyramidal geometry, have been exploited for the first time. The three-coordinate Er-based complex is the first equatorially coordinated mononuclear Er-based single-molecule magnet (SMM) corroborating that simple models can effectively direct the design of target SMMs incorporating 4f-elements.
View Article and Find Full Text PDFFive dinuclear lanthanide complexes with formula [Ln2L2(OAc)4(MeOH)a(H2O)b] · cMeOH · dH2O (a = 2, b = 0, c = 2, d = 0, Ln = Sm (1), Gd (2), Dy (3); a = 0, b = 2, c = 4, d = 2, Ln = Tm (4)) and [Yb2L2(OAc)4(MeOH)2]·[Yb2L2(OAc)4(H2O)2] · 2H2O (5) (HL = (E)-N'-(2-hydroxybenzylidene)-2-mercaptonicotinohydrazide), have been synthesized and their crystal structures and magnetic properties are reported. All five complexes are centrosymmetric, showing a similar dinuclear core with two lanthanide ions in each complex being bridged by acetate groups in the η(1):η(2):μ2 mode. The various coordination modes of acetate groups result in two kinds of coordination geometries for Ln ions with the ones in complexes 1-4 and the Yb2 in 5 being nine-coordinated with a mono-capped square antiprism geometry, while the Yb1 ions in the other part of complex 5 are eight-coordinated with a triangular dodecahedron geometry.
View Article and Find Full Text PDFA new Dy3 triangle bridged by a deprotonated alkoxyl group of a Schiff-base ligand together with a μ3-OH group has been prepared, in which intramolecular ferromagnetic interactions and single molecule magnet behaviour have been observed.
View Article and Find Full Text PDFThe reactions between a salen ligand N,N'-bis(3-methoxysalicylidene)-1,2-cyclohexanediamine (H2L) and different metal salts lead to the formation of four 3d-4f [MDy] and [MDy]2 (M = Zn/Cu) compounds, where the [MDy]2 can be considered as resulting from the assembly of two [MDy] building blocks. Field-induced single molecule magnet (SMM) behavior was observed in [ZnDy] and [CuDy] compounds with the effective suppression of fast quantum tunneling under a dc field. Moreover, the [ZnDy]2 compound demonstrates typical SMM behavior, which may originate from the high axial anisotropy of Dy ions correlating to the change of coordination geometry and enhanced ferromagnetic interactions between Dy ions via the coupling of two [DyZn] units.
View Article and Find Full Text PDFTwo new dinuclear dysprosium compounds, [Dy2(HL1)2(PhCOO)2(CH3OH)2] (1) and [Dy2(L2)2(NO3)2(CH3OH)2]·2CH3OH·4H2O (2), have been assembled through applying two ligands with different coordination pockets. The different features of ligands H3L1 and H2L2 result in the distinct coordination geometry of the metal ions in their respective structures. The Dy ions of complexes 1 and 2 were linked by the alkoxide- and hydrazone-O, and display the hula hoop-like and the broken hula hoop-like coordination geometry, respectively.
View Article and Find Full Text PDFReactions of rare earth benzoate and nickel perchlorate with a Schiff-base ligand, 2-([(2-hydroxyphenyl)imino]methyl) phenol (H2L), in the presence of triethylamine yielded three heterobimetallic octanuclear clusters of general formula [RE3Ni5L5(PhCOO)3(μ3-OH)5(μ3-OCH3)(CH3OH)4(H2O)]·xCH3OH·yH2O (RE = Dy(III), x = 4, y = 4 (1), RE = Gd(III), x = 5, y = 4 (2), RE = Y(III), x = 5, y = 3 (3)). Single-crystal X-ray diffraction reveals that the metal core of each cluster consists of two distorted [RE2Ni2O4] cubane-like moieties and a heterobimetallic triangular [RE2NiO2] unit, with RE ions arranged in a typical triangular fashion. Variable-temperature solid state magnetic susceptibilities of these complexes were measured in the temperature range 2-300 K and the results indicate that an overall ferromagnetic interaction among the metal ions is operative for compounds 2 and 3.
View Article and Find Full Text PDFTwo Dy(3) triangles encapsulated inside the cavity of a macrocycle ligand have been successfully synthesized, providing a unique opportunity to probe the relaxation dynamics of the complexes by altering the axial ligands.
View Article and Find Full Text PDFSelf-assembly of polydentate Schiff base 2,6-diformyl-4-methylphenol di(benzoy1hydrazone) (H(3)L), with dysprosium thiocyanate and sodium azide, affords two novel trinuclear triangular circular helicate dysprosium(III) complexes, [Dy(3)(μ(3)-OCH(3))(2)(HL)(3)(SCN)]·4CH(3)OH·2CH(3)CN·2H(2)O (1) or [Dy(3)(μ(3)-N(3))(μ(3)-OH)(H(2)L)(3)(SCN)(3)](SCN)·3CH(3)OH·H(2)O (2), depending on the presence or absence of base. Single-crystal X-ray analyses show that two μ(3)-methoxy oxygens cap the Dy(3) triangle in complex 1 and that one μ(3)-OH and one μ(3)-N(3)(-) cap the Dy(3) triangle of complex 2, representing the first example of a μ(3)-N(3)(-)-capped lanthanide complex reported to date. Ac susceptibility measurements reveal that multiple relaxation processes and the onset of slow magnetization relaxation occur for complex 1 and 2, respectively.
View Article and Find Full Text PDFTwo linear tetranuclear lanthanide complexes of general formula [Ln(4)(L)(2)(C(6)H(5)COO)(12)(MeOH)(4)], where HL = 2,6-bis((furan-2-ylmethylimino)methyl)-4-methylphenol, () and Ln(III) = Dy(III) (1) and Gd(III) (2), have been synthesized and characterized. The crystal structural analysis demonstrates that two Schiff-base ligands inhibit the growth of benzoate bridged 1D chains, leading to the isolation of discrete tetranuclear complexes due to their steric hindrances. Every Ln(III) ion is coordinated by eight donor atoms in a distorted bicapped trigonal-prismatic arrangement.
View Article and Find Full Text PDFSingle-ion magnets 1 and 2 and their diamagnetic analogues 3 and 4 for magnetic-site dilution were obtained through substitution of the coordinated water molecules of [Ln(TTA)(3)(H(2)O)(2)] (Ln=Dy (1, 2), Y (3, 4); TTA=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate) by 2,2'-bipyridine (1, 3) and 1,10-phenanthroline (2, 4) capping ligands. Their structures and magnetic properties were investigated with the goal of identifying features relevant to modulating relaxation dynamics of single-ion magnets. The metal ions in all complexes adopt an approximately square-antiprismatic (SAP) O(6)N(2) coordination environment.
View Article and Find Full Text PDFTwo dinuclear triple-stranded helicates [Ln(2)L(3)](3+) (Ln = Dy and Tb) obtained via self-assembly from the ligand HL (2,6-diformyl-4-methylphenol di(benzoylhydrazone)) and lanthanide perchlorate have been synthesized and characterized. The crystal structural analysis demonstrates that three ligand strands wrap around a pseudo-threefold axis defined by the two metal ions, leading to a 'meso'-relation between the right- (Δ) and left-hand (Λ) configurations of [Ln(2)L(3)](3+) in the crystal. Each Ln(III) ion is coordinated by nine donor atoms in a distorted tricapped trigonal-prismatic arrangement.
View Article and Find Full Text PDFA well-defined two-step relaxation, described by the sum of two modified Debye functions, is observed in a new alkoxido-bridged linear tetranuclear Dy(III) aggregate showing single-molecule magnet behavior with a remarkably large energy barrier. This compound represents a model molecular aggregate with a clear two-step relaxation evidenced by frequency-dependent susceptibility, which therefore may stimulate further investigations regarding the relaxation dynamics of lanthanide-based systems.
View Article and Find Full Text PDF