Acute kidney injury (AKI) is a common medical condition with high morbidity and mortality. Although urinalysis provides a noninvasive and convenient diagnostic method for AKI at the molecular level, the low sensitivity of current chemical probes used in urinalysis hinders the time diagnosis of AKI. Herein, we achieved the sensitive and early diagnosis of AKI by the development of a chemiluminescent probe suitable for detection of urinary Vanin-1.
View Article and Find Full Text PDFFluorescence imaging has been widely employed for biomedical research and clinical diagnostics. With ease of synthesis and excellent photophysical properties, D-A type fluorophores are widely designed for fluorescence imaging. However, traditional D-A type fluorophores are solvatochromic which reduces the fluorescence brightness in the biological system.
View Article and Find Full Text PDFDeveloping chemiluminescence probe with a slow kinetic profile, even a constant emission within analytical time, would improve the analytical sensitivity, but still remains challenging. This work reports a novel strategy to afford long-lasting in vivo imaging by developing a self-assembled chemiluminophore HPQCL-Cl via the introduction of the hydrogen-bond-driven self-assembled dye HPQ to Schaap's dioxetane. Compared with classical chemiluminophore HCL, self-assembled HPQCL-Cl was isolated from the physiological environment, thereby lowering its deprotonation and prolonging its half-life.
View Article and Find Full Text PDFAs an organelle in cells, lysosomes play an important role in the degradation of biological macromolecules and pathogens. To elucidate the function of lysosomes in normal or disease states, recently, various fluorescent probes have been reported for imaging lysosomal analytes. However, because of the particularity of the lysosomal environment, most of the reported lysosomal fluorescent probes suffered from a series of practical issues such as easy diffusion, low detection signal-to-background ratio and false signal.
View Article and Find Full Text PDFWe report here an activatable chemiluminescent probe CL-O for the high-contrast imaging of O. CL-O exhibited a high selectivity toward O and was able to evaluate the degree of inflammation in mice by detecting endogenous O levels in acute inflamed mice.
View Article and Find Full Text PDFmonitoring of the location and transportation of bioactive molecules is essential for deciphering diverse biological events in the field of biomedicine. In addition, obtaining the information of lesions will provide a clear perspective for surgeons to perform precise resection in clinical surgery. Notably, delivering drugs or operating photodynamic therapy/photothermal therapy by labeling the lesion regions of interest can improve treatment and reduce side effects .
View Article and Find Full Text PDFLabile heme (LH) is an important signaling molecule in virtually all organisms. However, specifically detecting LH remains an outstanding challenge. Herein, by learning from the bioactivation mechanism of artemisinin, we have developed the first LH-responsive small-molecule fluorescent probe, , based on a 4-amino-1,8-naphthalimide () fluorophore.
View Article and Find Full Text PDFThe dye wastewater treatment by membrane separation technology has obtained extensive attention in recent years. Nevertheless, it was rare for research on the removal of differently charged mixed dyes. In this study, several UiO-66-NH composite membranes were prepared and optimization experiments were conducted.
View Article and Find Full Text PDFCarbon monoxide (CO) acts as an important gasotransmitter in delivering intramolecular and intermolecular signals to regulate a variety of physiological processes. This lipid-soluble gas can freely pass through the cell membrane and then diffuse to adjacent cells acting as a messenger. Although many fluorescent probes have been reported to detect intracellular CO, it is still a challenge to visualize the release behavior of endogenous CO.
View Article and Find Full Text PDFNanoscale metal-organic frameworks (NMOFs) have been applied for biomedical sensing in recent years. However, it is still a great challenge to construct a highly efficient NMOFs fluorescent probe for sensing in a biological system, with high signal-to-noise ratio, photostability, and deep tissue penetration. Herein, for the first time, we report the two-photon metal-organic framework (TP-MOF) as a sensing platform.
View Article and Find Full Text PDFFurin, a kind of trans-Golgi proprotein convertases, plays important role in various physiological processes. It is overexpressed in many cancers and relates to tumor growth and migration. In situ detection and imaging of furin is of great significance for obtaining real-time information about its activity.
View Article and Find Full Text PDFTreating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process.
View Article and Find Full Text PDFHere we demonstrated an alternative partial reduction graphene oxide/metal-organic frameworks nano-scale laminated membrane for dyes and heavy metal ions removal at low pressure. Compared with pure prGO membranes, the novel UiO-66-(COOH)/prGO membranes with loose structure and excellent selective permeability demonstrated significant enhancements of permeation for low-pressure nanofiltration. The UiO-66-(COOH)/prGO membranes possess more nanochannels structure, high surface charge and stability, which were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).
View Article and Find Full Text PDFRNA-cleaving DNAzymes have been demonstrated as a promising platform for sensing metal ions. However, the poor biological imaging performance of RNA-cleaving DNAzyme-based fluorescent probes has limited their intracellular applications. Compared with traditional one-photon fluorescence imaging, two-photon (TP) fluorescent probes have shown advantages such as increased penetration depth, lower tissue autofluorescence, and reduced photodamage.
View Article and Find Full Text PDFEndoplasmic reticulum aminopeptidase 1 (ERAP1), a metallopeptidase belonging to the M1 peptidase family, plays an important role in antigen processing in vivo. Additionally, many diseases are caused by ERAP1 perturbation. Thus, an efficient method for monitoring its content is extremely important for disease diagnosis and treatment.
View Article and Find Full Text PDFNanotechnology has great potential in water purification. However, the limitations such as aggregation and toxicity of nanomaterials have blocked their practical application. In this work, a novel copper nanoparticles-decorated graphene sponge (Cu-GS) was synthesized using a facile hydrothermal method.
View Article and Find Full Text PDFPolyurethane foam membrane filled with humic acid-chitosan crosslinked gels (HA-CS-PUF) for dye removal was prepared by soaking the foams into humic acid-chitosan (HA-CS) crosslinked gels and hot-pressing them into membranes. Scanning electron microscope, derivative thermogravimetry and X-ray photoelectron spectroscopy were used to characterize the HA-CS-PUF membrane. Results showed that the interaction of HA and CS was mainly through ionic cross-linking between carboxyl and protonated amino groups.
View Article and Find Full Text PDFCarbon nanotubes (CNTs), usually with a superior affinity with organic chemicals, are expected to ultimately released to the environment through their manufacturing, usage, and eventual disposal, which will influence the mobility and environmental risk of nonsteroidal anti-inflammatory drugs (NSAIDs). In this study, batch and column experiments were performed to examine the effects of two kinds of multi-walled carbon nanotubes (MWCNTs: MWCNT2040, MWCNT0815) and one kind of single-walled carbon nanotubes (SWCNTs) on the environmental fate of two NSAIDs, paracetamol (PA) and diclofenac sodium (DS), in sediments. Impact ways of CNTs including addition in inflow and mixing with sediments were investigated.
View Article and Find Full Text PDFIn this paper, based on reciprocal chiral substrate specificity, taking achiral molecules, ethanolamine (EA) and malachite green (MG) as two model targets, biostable L- DNA aptamers and L-RNA aptamers were generated respectively by chiral inversion of existing D-aptamers. In the detection of EA with L-DNA aptamer-based sensors, the feasibility of our strategy was confirmed, while in the detection of MG with L-RNA aptamers, linear calibration curves were obtained in the range from 0.1 to 5µm with the detection limit of 0.
View Article and Find Full Text PDFThe present article reports a novel biosensor for organophosphorus pesticides based on fluorescence resonance energy transfer (FRET) between nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs). The effective NC-dots/AuNPs assembly through the Au-N interaction results in good fluorescence quenching. Active acetylcholinesterase (AChE) catalyzes the hydrolysis of acetylthiocholine into -SH containing thiocholine to replace the NC-dots and trigger the aggregation of AuNPs.
View Article and Find Full Text PDFSilver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFBy employing DNAzyme as a recognition group and amplifier, and DNA-stabilized silver nanoclusters (DNA/AgNCs) as signal reporters, we reported for the first time a label-free catalytic and molecular beacon as an amplified biosensing platform for highly selective detection of cofactors such as Pb(2+) and L-histidine.
View Article and Find Full Text PDFDNAzymes, screened through in vitro selection, have shown great promise as molecular tools in the design of biosensors and nanodevices. The catalytic activities of DNAzymes depend specifically on cofactors and show multiple enzymatic turnover properties, which make DNAzymes both versatile recognition elements and outstanding signal amplifiers. Combining nanomaterials with unique optical, magnetic and electronic properties, DNAzymes may yield novel fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical and chemiluminescent biosensors.
View Article and Find Full Text PDFDevelopment of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA.
View Article and Find Full Text PDFFluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores.
View Article and Find Full Text PDF