Publications by authors named "Shuang-Yan Chang"

is a well-known probiotic with beneficial effects, such as anti-insulin resistance, anti-inflammatory, and improvement of the intestinal barrier. However, the underlying mechanisms remain unclear. Here, we found that gavage of improved the intestinal barrier and glucose homeostasis in HFD-fed mice.

View Article and Find Full Text PDF

Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disorder characterized by abnormal elevation in hormone levels, with currently lacking effective treatment options. N-3 polyunsaturated fatty acids (PUFA) have broad pharmacological activity and play a beneficial role in the development of PCOS. In this study, we observed that n-3 PUFA-eicosatrienoic acid (ETA) improves the estrous cycle and ovarian morphology in dehydroepiandrosterone (DHEA)-induced PCOS mice, particularly serum hormone levels.

View Article and Find Full Text PDF

Cyclophosphamide (CTX), a widely used chemotherapeutic agent for cancer treatment, has been associated with long-term toxicity and detrimental effects on oocytes and ovaries, resulting in female reproductive dysfunction. This study aimed to investigate the potential impact of CTX on in vitro maturation (IVM) injury of porcine oocytes and subsequent embryonic development, as well as its effects on epigenetic modification and gene activation during early embryonic development. The results demonstrated that CTX treatment caused aberrant spindle structure and mitochondrial dysfunction during oocyte maturation, inducing DNA damage and early apoptosis, which consequently disrupted meiotic maturation.

View Article and Find Full Text PDF

Obesity is a global health problem strongly linked to gut microbes and their metabolites. In this study, ginsenoside Rg1 (Rg1) reduced lipid droplet size and hepatic lipid accumulation by activating uncoupling protein 1 expression in brown adipose tissue (BAT), which in turn inhibited high-fat diet (HFD)-induced weight gain in mice. Furthermore, the intestinal flora of mice was altered, the abundance of , , , and was upregulated, and the concentrations of fecal bile acids were altered, with cholic acid and taurocholic acid concentrations being significantly increased.

View Article and Find Full Text PDF

Gut microbes and their metabolites are essential for maintaining host health and production. The intestinal microflora of pre-weaned calves gradually tends to mature with growth and development and has high plasticity, but few studies have explored the dynamic changes of intestinal microbiota and metabolites in pre-weaned beef calves. In this study, we tracked the dynamics of faecal microbiota in 13 new-born calves by 16S rRNA gene sequencing and analysed changes in faecal amino acid levels using metabolomics.

View Article and Find Full Text PDF

In this study, we aimed to characterize the anti-type 2 diabetes (T2D) effects of Blume extract (GEBE) and determine whether these are mediated through modification of the gut microbiota and bile acids. Mice were fed a high-fat diet (HFD), with or without GEBE, and we found that GEBE significantly ameliorated the HFD-induced hyperglycemia, insulin resistance, and inflammation by upregulating glucose transporter 4 (GLUT4) and inhibiting the toll-like receptor 4-nuclear factor kappa-B signaling pathway in white adipose tissue (WAT). In addition, we found that GEBE increased the abundance of and , and altered the serum bile acid concentrations, with a significant increase in deoxycholic acid.

View Article and Find Full Text PDF

Current studies on myostatin (MSTN), a well-known negative regulator of skeletal muscle, studies mainly focus on the its effects on skeletal muscle.However, its effects on smooth muscle are less studied, especially in the uterine horns. To identify the role of MSTN in uterine horn smooth muscle, this study used 6-8-month-old homozygous MSTN mutant (MSTN) gilts in anoestrum as animal models.

View Article and Find Full Text PDF

Myostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level.

View Article and Find Full Text PDF

Myostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN) and wild-type (WT) pigs of the same genotype was investigated.

View Article and Find Full Text PDF

Loss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear.

View Article and Find Full Text PDF