Background: Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury. Mesenchymal stem cell (MSC) transplantation is used to reduce tissue damage, but exosomes are more stable and highly conserved than MSCs. This study was conducted to investigate the therapeutic effects of MSC-derived exosomes (MSC-Exo) on cerebral ischemia-reperfusion injury in an model of oxygen-glucose deprivation/reperfusion (OGD/R), and to explore the underlying mechanisms.
View Article and Find Full Text PDFBackground: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stem cells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, the mechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects of BMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) injury.
View Article and Find Full Text PDFEarly prognostication of neurological outcome in comatose patients after cardiac arrest (CA) is vital for clinicians when assessing the survival time of sufferers and formulating appropriate treatment strategies to avoid the withdrawal of life-sustaining treatment (WLST) from patients. However, there is still a lack of sensitive and specific serum biomarkers for early and accurate identification of these patients. Using an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic approach, we discovered 55 differentially expressed proteins, with 39 up-regulated secreted serum proteins and 16 down-regulated secreted serum proteins between three comatose CA survivors with good versus poor neurological recovery.
View Article and Find Full Text PDFA novel acidic polysaccharide, named as AWPA, was extracted form Annona squamosa residue by 0.1 M NaOH alkaline solution and purified by DEAE-cellulose and Sephadex G-150. HPLC analysis indicated that AWPA was a homogeneous polysaccharide with molecular weight of 3.
View Article and Find Full Text PDFJ Thromb Thrombolysis
January 2018
Cerebral venous sinus thrombosis (CVST) is a rare ischemic cerebrovascular disease. The aim of this retrospective observational study was to investigate the risk factors for complication of cerebral venous sinus thrombosis by seizures and to explore the impact of such seizures on clinical outcomes. Patients with cerebral venous sinus thrombosis with or without epileptic seizures were retrospectively analyzed and compared in terms of clinical variables, causative factors, clinical presentation, and imaging data.
View Article and Find Full Text PDFA segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.
View Article and Find Full Text PDFCaffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated.
View Article and Find Full Text PDFCaffeic acid phenethyl ester (CAPE) is a rare natural ingredient with several biological activity, but the industrial production of CAPE using lipase-catalyzed esterification of caffeic acid (CA) and 2-phenylethanol (PE) in ionic liquids is hindered by low substrate concentrations and a long reaction time. To establish a high-efficiency bioprocess for obtaining CAPE, a novel continuous flow biosynthesis of CAPE from alkyl caffeate and PE in [Bmim][Tf2N] using a packed bed microreactor was successfully carried out. Among the tested alkyl caffeates and lipases, methyl caffeate and Novozym 435, respectively, were selected as the suitable substrate and biocatalyst.
View Article and Find Full Text PDFPropyl caffeate has the highest antioxidant activity among caffeic acid alkyl esters, but its industrial production via enzymatic transesterification in batch reactors is hindered by a long reaction time (24h). To develop a rapid process for the production of propyl caffeate in high yield, a continuous-flow microreactor composed of a two-piece PDMS in a sandwich-like microchannel structure was designed for the transesterification of methyl caffeate and 1-propanol catalyzed by Novozym 435 in [B mim][CF3SO3]. The maximum yield (99.
View Article and Find Full Text PDFPropyl caffeate has the highest antioxidant capacity in the caffeate alkyl esters family, but industrial production of propyl caffeate is hindered by low yields using either the chemical or enzymatic catalysis method. To set up a high-yield process for obtaining propyl caffeate, a novel chemoenzymatic synthesis method using lipase-catalyzed transesterification of an intermediate methyl caffeate or ethyl caffeate and 1-propanol in ionic liquid was established. The maximum propyl caffeate yield of 98.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
March 2012
The title compound, C(14)H(18)O(4), a derivative of caffeic acid, has an E configuration about the C=C bond. The benzene ring is almost coplanar with the C=C-C(O)-O-C linker [maximum deviation = 0.050 (2) Å], making a dihedral angle of only 4.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
January 2012
The title mol-ecule, C(15)H(20)O(4), has an E conformation about its C=C bond and is almost planar (r.m.s.
View Article and Find Full Text PDF