Publications by authors named "Shuang Wan"

Rational structural designs of solid polymer electrolytes featuring rich interface-phase morphologies can improve electrolyte connection and rapid ion transport. However, these rigid interfacial structures commonly result in diminished or entirely inert ionic conductivity within their bulk phase, compromising overall electrolyte performance. Herein, a multi-component ion-conductive electrolyte was successfully designed based on a refined multi-structural polymer electrolyte (RMSPE) framework with uniform Li solvation chemistry and rapid Li transporting kinetics.

View Article and Find Full Text PDF

species are causal pathogens instrumental in human food-borne diseases. The pandemic survey related to multidrug resistant (MDR) genomics enables the prevention and control of their dissemination. Currently, serotype Mbandaka is notorious as a multiple host-adapted non-typhoid .

View Article and Find Full Text PDF

With the continuously growing demand for wide-range applications, lithium-ion batteries (LIBs) are increasingly required to work under conditions that deviate from room temperature (RT). However, commercial electrolytes exhibit low thermal stability at high temperatures (HT) and poor dynamic properties at low temperatures (LT), hindering the operation of LIBs under extreme conditions. The bottleneck restricting the practical applications of LIBs has promoted researchers to pay more attention to developing a series of innovative electrolytes.

View Article and Find Full Text PDF

The development of high-energy-density solid-state lithium metal battery has been hindered by the unstable cycling of Ni-rich cathodes at high rate and limited wide-temperatures adoptability. In this study, an ionic liquid functionalized quasi-solid-state electrolyte (FQSE) is prepared to address these challenges. The FQSE features a semi-immobilized ionic liquid capable of anchoring solvent molecules through electrostatic interactions, which facilitates Li desolvation and reduces deleterious solvent-cathode reactions.

View Article and Find Full Text PDF

Objectives: The increasing emergence of hypervirulent Klebsiella pneumoniae (hv-Kp) and carbapenem-resistant K. pneumoniae (CR-Kp) is a serious and substantial public health problem. The use of the last resort antimicrobials, tigecycline and polymyxin to combat infections is complicated by the expanding repertoire of newly-identified CR-hvKp.

View Article and Find Full Text PDF

, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of genome sequence has hampered its development and utilization.

View Article and Find Full Text PDF

We applied 24-h Holter monitoring to analyze the characteristics of arrhythmias and heart rate variability in Chinese patients with primary aldosteronism (PA) and compared them with age-, sex-, and blood pressure-matched primary hypertension (PH) patients. A total of 216 PA patients and 261 PH patients were enrolled. The nonstudy data were balanced using propensity score matching (PSM), and the risk variables for developing arrhythmias were then analyzed using logistic regression analysis.

View Article and Find Full Text PDF

Constructing an inorganic-rich and robust solid electrolyte interphase (SEI) is one of the crucial approaches to improving the electrochemical performance of sodium metal batteries (SMBs). However, the low conductivity and distribution of common inorganics in SEI disturb Na diffusion and induce nonuniform sodium deposition. Here, we construct a unique SEI with evenly scattered high-conductivity inorganics by introducing a self-sacrifice LiTFSI into the sodium salt-base carbonate electrolyte.

View Article and Find Full Text PDF

Neonicotinoid compounds are usually considered harmless and eco-friendly in terms of their targeted toxicity compared to that of pyrethroids and phosphorus-containing pesticides. However, overuse of neonicotinoid insecticides resulted in the accumulation of its residuals or intermediates in soil and water, which consequently affected beneficial insects as well as mammals, yielding pollution and secondary risks. This review summarized the recent advances in neonicotinoid degrading microorganisms and their metabolic diversity, with the aim to address the urgent need for degrading these insecticides.

View Article and Find Full Text PDF

The multivalent effect is often used to engineer microfluidic affinity interfaces to improve the target separation efficiency. Currently, no design rules exist for thermodynamic and kinetic tuning of properly joining multiple ligands. Herein, we developed a thermodynamic and kinetic modulating strategy of the microfluidic affinity interface via a merit-complementary-heteromultivalent aptamers functionalized DNA nanoassembly.

View Article and Find Full Text PDF

The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT).

View Article and Find Full Text PDF

Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.

View Article and Find Full Text PDF

Broad-spectrum anti-SARS-CoV-2 strategies that can inhibit the infection of wild-type and mutant strains would alleviate their threats to global public health. Here, we propose an icosahedral DNA framework for the assembly of up to 30 spatially arranged neutralizing aptamers (IDNA-30) to inhibit viral infection. Each triangular plane of IDNA-30 is composed of three precisely positioned aptamers topologically matching the SARS-CoV-2 spike trimer, thus forming a multivalent spatially patterned binding.

View Article and Find Full Text PDF

Metal-organic framework (MOF) glasses are a fascinating new class of materials, yet their prosperity has been impeded by the scarcity of known examples and limited vitrification methods. In the work described in this report, we applied synergistic stimuli of vapor hydration and thermal dehydration to introduce structural disorders in interpenetrated -net MOF, which facilitate the formation of stable super-cooled liquid and quenched glass. The material after stimulus has a glass transition temperature () of 560 K, far below the decomposition temperature of 695 K.

View Article and Find Full Text PDF

The exploitation of effective strategies to accelerate the Na diffusion kinetics and improve the structural stability in the electrode is extremely important for the development of high efficientcy sodium-ion batteries. Herein, Se vacancies and heterostructure engineering are utilized to improve the Na -storage performance of transition metal selenides anode prepared through a facile two-in-one route. The experimental results coupled with theoretical calculations reveal that the successful construction of the Se vacancies and heterostructure interfaces can effectively lower the Na diffusion barrier, accelerate the charge transfer efficiency, improve Na adsorption ability, and provide an abundance of active sites.

View Article and Find Full Text PDF

Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids.

View Article and Find Full Text PDF

New neutralizing agents against SARS-CoV-2 and associated mutant strains are urgently needed for the treatment and prophylaxis of COVID-19. Herein, we develop a spherical cocktail neutralizing aptamer-gold nanoparticle (SNAP) to block the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 and host ACE2. With the multivalent aptamer assembly as well as the steric hindrance effect of the gold scaffold, SNAP exhibits exceptional binding affinity against the RBD with a dissociation constant of 3.

View Article and Find Full Text PDF

Objectives: The main cardiac features of primary aldosteronism (PA) are impaired left ventricular (LV) diastolic function, and some articles also reported more cardiac fibrosis in PA patients. However, the correlation between LV dysfunction and diffuse myocardial fibrosis in PA remains unknown.

Methods: We enrolled 84 PA patients and 28 essential hypertension (EH) patients in West China Hospital.

View Article and Find Full Text PDF

The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 is threating global health. Inhibiting interaction of the receptor-binding domain of SARS-CoV-2 S protein (S ) and human ACE2 receptor is a promising treatment strategy. However, SARS-CoV-2 neutralizing antibodies are compromised by their risk of antibody-dependent enhancement (ADE) and unfavorably large size for intranasal delivery.

View Article and Find Full Text PDF

As a malignant disease that seriously threatens human health, hepatocellular carcinoma (HCC) lacks effective early screening and prognostic assessment methods. Herein, we developed a method for efficient capture and multiphenotype analysis of circulating tumor cells (CTCs) of hepatocellular carcinoma. The anti-ASGPR antibody and the anti-EpCAM antibody were modified in parallel on a deterministic lateral displacement (DLD)-patterned microfluidic Synergetic-Chip to enhance capture efficiency by a complementary effect.

View Article and Find Full Text PDF

Vasculogenesis (de novo formation of vessels) induced by endothelial progenitor cells (EPCs) is requisite for vascularized bone regeneration. However, there exist few available options for promoting vasculogenesis within artificial bone grafts except for exogenous EPC transplantation, which suffers from the source of EPC, safety, cost, and time concerns in clinical applications. This study aimed at endogenous EPC recruitment for vascularized bone regeneration by using a bioinspired EPC-induced graft.

View Article and Find Full Text PDF

Background: Case-finding services using a composite total risk score (TRS) and the informant AD8 have been previously recommended to detect cognitive impairment (CI) in government subsidized primary health care centers of Singapore (ie, polyclinics).

Objective: We compared the feasibility of implementing the services recommended for government-subsidized primary health care in private, primary health care service providers such as general practitioner (GP) clinics.

Method: 123 patients ≥60 years of age were recruited from 2 GP clinics within Singapore.

View Article and Find Full Text PDF

We describe a minimally invasive arthrodesis technique using an arthroscope and fixation with headless screws. From February 2007 to March 2010, we treated 11 thumbs in 11 patients with posttraumatic carpometacarpal joint osteoarthritis. All patients reported pain at the thumb carpometacarpal joint.

View Article and Find Full Text PDF