Starting from our previously reported nonnucleoside reverse transcriptase inhibitor (NNRTI, 3), continuous efforts were made to enhance its potency and safety through a structure-based drug design strategy. This led to the discovery of a series of novel piperidine-biphenyl-diarylpyrimidines (DAPYs). Compound 10p, the most active compound in this series, exhibited an EC value of 6 nM against wide-type HIV-1 strain, which was approximately 560-fold more potent than the initial compound 3 (EC = 3.
View Article and Find Full Text PDFThe direct oxidation of methane to methanol (MTM) remains a significant challenge in heterogeneous catalysis due to the high dissociation energy of the C-H bond in methane and the high desorption energy of methanol. In this work, we demonstrate a breakthrough in selective MTM by achieving a high methanol space-time yield of 2678 mmol molCu-1 h-1 with 93% selectivity in a continuous methane-steam reaction at 400 °C. The superior performance is attributed to the confinement effect of 6-membered ring (6MR) voids in SSZ-13 zeolite, which host isolated Cu-OH single sites.
View Article and Find Full Text PDFFollowing on our initial discovery of S-CN-DABOs as non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel S-N-DABO derivatives F1-F31 were developed by substituting the cyano group of S-CN-DABOs with azide group. Some of these compounds were conferred significantly increased potency against wild-type HIV-1 and clinically observed mutant strains. Remarkably, the best compound F10 exerted a 7-fold improvement in potency (EC = 0.
View Article and Find Full Text PDF