Publications by authors named "Shuaishi Gao"

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Understanding the metabolic changes in cancer cells may provide attractive therapeutic targets and new strategies for cancer therapy. The metabolic states are not the same in different cancer types or subtypes, even within the same sample of solid tumors.

View Article and Find Full Text PDF

Background: Cancer cells undergo global reprogramming of cellular metabolism to satisfy demands of energy and biomass during proliferation and metastasis. Computational modeling of genome-scale metabolic models is an effective approach for designing new therapeutics targeting dysregulated cancer metabolism by identifying metabolic enzymes crucial for satisfying metabolic goals of cancer cells, but nearly all previous studies neglect the existence of metabolic demands other than biomass synthesis and trade-offs between these contradicting metabolic demands. It is thus necessary to develop computational models covering multiple metabolic objectives to study cancer metabolism and identify novel metabolic targets.

View Article and Find Full Text PDF

CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) has been the single most frequent cause of safety-related drug marketing withdrawals for the past 50 years. Recently, deep learning (DL) has been successfully applied in many fields due to its exceptional and automatic learning ability. In this study, DILI prediction models were developed using DL architectures, and the best model trained on 475 drugs predicted an external validation set of 198 drugs with an accuracy of 86.

View Article and Find Full Text PDF