Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites.
View Article and Find Full Text PDFIn the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling.
View Article and Find Full Text PDFThe occurrence and development of tumors require the metabolic reprogramming of cancer cells, namely the alteration of flux in an autonomous manner via various metabolic pathways to meet increased bioenergetic and biosynthetic demands. Tumor cells consume large quantities of nutrients and produce related metabolites via their metabolism; this leads to the remodeling of the tumor microenvironment (TME) to better support tumor growth. During TME remodeling, the immune cell metabolism and antitumor immune activity are affected.
View Article and Find Full Text PDFFollowing a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks.
View Article and Find Full Text PDFThe DNA damage response (DDR) system plays an important role in maintaining genome stability and preventing related diseases. The DDR network comprises many proteins and posttranslational modifications (PTMs) to proteins, which work in a coordinated manner to counteract various genotoxic stresses. Lysine crotonylation (Kcr) is a newly identified PTM occurring in both core histone and non-histone proteins in various organisms.
View Article and Find Full Text PDFHomologous recombination (HR) is an error-free DNA double-strand break (DSB) repair pathway, which safeguards genome integrity and cell viability. Human C-terminal binding protein (CtBP)-interacting protein (CtIP) is a central regulator of the pathway which initiates the DNA end resection in HR. Ubiquitination modification of CtIP is known in some cases to control DNA resection and promote HR.
View Article and Find Full Text PDFThe reversible post-translational modification (PTM) of proteins plays an important role in many cellular processes. Lysine crotonylation (Kcr) is a newly identified PTM, but its functional significance remains unclear. Here, we found that Kcr is involved in the replication stress response.
View Article and Find Full Text PDFmiRNAs are important regulators of eukaryotic gene expression. The post-transcriptional maturation of miRNAs is controlled by the Drosha-DiGeorge syndrome critical region gene 8 (DGCR8) microprocessor. Dysregulation of miRNA biogenesis has been implicated in the pathogenesis of human diseases, including cancers.
View Article and Find Full Text PDFCadmium (Cd) is a dispensable element for the human body and is usually considered a carcinogen. Occupational and environmental Cd exposure leads to sustained cellular proliferation in some tissues and tumorigenesis via an unclear mechanism. Here, we evaluated the role of Cd in the DNA damage response (DDR).
View Article and Find Full Text PDFGenome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT).
View Article and Find Full Text PDFProper DNA double-strand break (DSB) repair is essential for maintaining genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism, which introduces mutations at break sites and contributes to chromosomal translocations and telomere fusions, thus driving carcinogenesis. Mitotic kinases PLK1, CDK1 and Aurora A are important for supporting MMEJ and are often overexpressed in various tumors.
View Article and Find Full Text PDF