Publications by authors named "Shuaijing Zhao"

Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI.

View Article and Find Full Text PDF

Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes tissue structure damage and composition changes of the neural parenchyma, resulting in severe consequences for spinal cord function. Mimicking the components and microstructure of spinal cord tissues holds promise for restoring the regenerative microenvironment after SCI. Here, we have utilized electrospinning technology to develop aligned decellularized spinal cord fibers (A-DSCF) without requiring synthetic polymers or organic solvents.

View Article and Find Full Text PDF

Tissue engineering aims to generate functional biological substitutes to repair, sustain, improve, or replace tissue function affected by disease. With the rapid development of space science, the application of simulated microgravity has become an active topic in the field of tissue engineering. There is a growing body of evidence demonstrating that microgravity offers excellent advantages for tissue engineering by modulating cellular morphology, metabolism, secretion, proliferation, and stem cell differentiation.

View Article and Find Full Text PDF

Noncovalent interactions between cells and environmental cues have been recognized as fundamental physiological interactions that regulate cell behavior. However, the effects of the covalent interactions between cells and biomaterials on cell behavior have not been examined. Here, we demonstrate a combined strategy based on covalent conjugation between biomaterials (collagen fibers/lipid nanoparticles) and various cells (exogenous neural progenitor cells/astrocytes/endogenous tissue-resident cells) to promote neural regeneration after spinal cord injury (SCI).

View Article and Find Full Text PDF

The first transition-metal-free regioselective synthesis of 2,3-diarylindenones tandem annulation of 2-alkynylbenzaldehydes with phenols is described. Two different modes of reaction controlled by electronic effects and temperature furnished either "non-rearranged" or "rearranged" indenones in high selectivity.

View Article and Find Full Text PDF

Auxin is one of the most critical hormones in plants. YUCCA (Tryptophan aminotransferase of (TAA)/YUCCA) enzymes catalyze the key rate-limiting step of the tryptophan-dependent auxin biosynthesis pathway, from IPA (Indole-3-pyruvateacid) to IAA (Indole-3-acetic acid). Here, 13 YUCCA family genes were identified from , which were divided into four categories, distributing randomly on chromosomes (2 = 14).

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3'-5' ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense.

View Article and Find Full Text PDF