Publications by authors named "Shuaijin Wu"

Silicon is a promising material for anodes in energy-storage devices. However, excessive growth of a solid-electrolyte interphase (SEI) caused by the severe volume change during the (de)lithiation processes leads to dramatic capacity fading. Here, we report a super-concentrated electrolyte composed of lithium bis(fluorosulfonyl)imide (LiFSI) and propylene carbonate (PC) with a molar ratio of 1:2 to improve the cycling performance of silicon nanoparticles (SiNPs).

View Article and Find Full Text PDF

Si has been extensively examined as a potential alternative to carbonaceous negative materials, because it shows exceptional gravimetric capacity and abundance. In recent years, the strategy of using nano-structured silicon materials as building blocks to build micro-sized silicon-based materials has been widely studied. In this work, a commercialized and benchmark micro-sized silicon-based material (denoted as SiO /C) is used as research target and three groups of materials with different particle size distributions (PSDs) were obtained by simply mechanical sieving.

View Article and Find Full Text PDF