Publications by authors named "Shuaifang Wang"

The alcoholism can be detected by analyzing electroencephalogram (EEG) signals. However, analyzing multi-channel EEG signals is a challenging task, which often requires complicated calculations and long execution time. This paper proposes three data selection methods to extract representative data from the EEG signals of alcoholics.

View Article and Find Full Text PDF

This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A statistical analysis method is employed to choose the optimal channels to identify the abnormalities in alcoholics.

View Article and Find Full Text PDF

Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters.

View Article and Find Full Text PDF