Publications by authors named "ShuaiLong Zhang"

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

Microgrippers are essential for assembly and manipulation at the micro- and nano-scales, facilitating important applications in microelectronics, MEMS, and biomedical engineering. To guarantee the safe handling of delicate materials and micro-objects, a microgripper needs to be designed to operate with exceptional precision, rapid response, user-friendly operation, strong reliability, and low power consumption. In this study, we develop an electrothermal actuated microgripper with Al-SiO bimorphs as the primary structural element.

View Article and Find Full Text PDF

Soft robots have developed gradually in the fields of portability, high precision, and low noise level due to their unique advantages of low noise and low energy consumption. This paper proposes an electromagnetically driven elastomer, using gelatin and glycerol (GG) as matrix materials and a mixture of multiwalled carbon nanotubes (MWCNTs) and Ag NWs (MA) as the conductive medium. Inchworm-inspired and spider-inspired soft robots have been developed, demonstrating fast movement speed, flexibility, and loading performance.

View Article and Find Full Text PDF

This study introduces an advanced bioanalytical platform that combines digital microfluidics (DMF) with Raman spectroscopy, effectively addressing common issues in bioanalysis such as sample contamination, excessive consumption of samples and reagents, and manual handling. Our innovative system is engineered to handle diverse sample types and enables both sample preparation and in-situ analysis on a single device, utilizing less than 5 μL of samples and reagents. It incorporates a Translucent Raman Enhancement Stack (TRES) sensor, which boosts the detection signal, and includes droplet-driving functionality for automated processing of complex samples in a compact setting.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogen is seen as a clean and renewable energy source, but producing it efficiently via the hydrogen evolution reaction (HER) faces challenges related to slow reaction speeds and expensive electrocatalysts.
  • Recent research highlights the use of electrospun micro/nanofiber-based electrocatalysts which offer advantages like better electron transport and higher surface area, making them promising for HER.
  • The review details various types of these electrocatalysts, their enhancement strategies, and discusses ongoing challenges and future directions for research in this field.
View Article and Find Full Text PDF

Aim: There is no conclusive evidence which one is the optimal methodology for enhancing the quality and efficacy of learning for medical students. Therefore, this systematic review and network meta-analysis aims to evaluate and prioritize various teaching strategies in medical education, including simulation-based learning (SBL), flipped classrooms (FC), problem-based learning (PBL), team-based learning (TBL), case-based learning (CBL), and bridge-in, objective, pre-assessment, participatory learning, post-assessment, and summary (BOPPPS).

Methods: We conducted a comprehensive systematic search of PubMed, Embase, Web of Science, the Cochrane Library, and some key medical education journals up to November 31, 2023.

View Article and Find Full Text PDF
Article Synopsis
  • - Pathogens cause around 4.95 million deaths each year, and traditional detection methods like microscopy are outdated, slow, and often subjective.
  • - Isothermal amplification techniques such as recombinase polymerase amplification (RPA) offer a faster alternative but struggle with specificity and automation.
  • - This study presents a new optofluidic platform that uses advanced techniques for rapid, label-free pathogen detection, achieving high sensitivity and the ability to simultaneously identify multiple strains within 50 minutes.
View Article and Find Full Text PDF
Article Synopsis
  • Fungal infections are commonly caused by specific species, making accurate identification crucial in clinical settings due to their varied characteristics.
  • Current technologies face challenges like long processing times and high costs for identifying these species, which hampers onsite diagnosis.
  • A new semi-nested recombinase polymerase amplification (RPA) genoarray system has been developed for quick, sensitive, and cost-effective identification of four specific species, significantly improving detection capabilities over traditional methods.
View Article and Find Full Text PDF
Article Synopsis
  • A novel label-free cell sorting method combines deep learning and microfluidic technology to differentiate cells based on their shape, achieving high precision and purity in sorting.
  • Using an Active-Matrix Digital Microfluidics platform, the method employs the YOLOv8 model for accurate droplet classification and incorporates advanced algorithms for efficient path planning.
  • Experimental results demonstrated impressive sorting capabilities with HeLa cells, achieving up to 98.5% precision and effective recovery rates, highlighting its potential for clinical and research applications in cell biology.
View Article and Find Full Text PDF

Nucleic acid detection technology has become a crucial tool in cutting-edge research within the life sciences and clinical diagnosis domains. Its significance is particularly highlighted during the respiratory virus pandemic, where nucleic acid testing plays a pivotal role in accurately detecting the virus. Isothermal amplification technologies have been developed and offer advantages such as rapidity, mild reaction conditions and excellent stability.

View Article and Find Full Text PDF

Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72 h for obtaining the results. In healthcare facilities, the global distribution of vancomycin-resistant (VRE) infections underscores the importance of rapidly determining VRE isolates.

View Article and Find Full Text PDF

Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability.

View Article and Find Full Text PDF

With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors.

View Article and Find Full Text PDF

Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H.

View Article and Find Full Text PDF

Temperature significantly influences the physical parameters of granite, resulting in variations in the rock's thermal conductivity. In order to examine the impact of changes in multiple physical parameters of granite at different temperatures on the thermal conductivity of rocks, Principal Component Analysis (PCA) was employed to determine the correlation between granite at different temperatures and various physical parameters, including density (ρ), P-wave velocity (P), thermal conductivity (K), and thermal diffusion coefficient (K). Utilizing the linear contribution rate, a single indicator 'y' was derived to comprehensively represent the thermal conductivity of rocks.

View Article and Find Full Text PDF

DNA-dependent protein kinase catalytic subunit (DNA-PK) is a multifunctional serine‑threonine protein kinase that plays roles in non-homologous end joining of DNA repair in cells. NU7441 is a specific DNA-PKcs inhibitor. We investigated the effects of NU7441 on the transcriptome of BT549 triple negative breast cancer cells.

View Article and Find Full Text PDF

Introduction: Mounting evidence has suggested that novel teaching strategies have a positive impact on the quality and efficiency of medical education. However, the comprehensive evidence about the superiority among various strategies is not clear. To address this issue, we aim to conduct a systematic review and network meta-analysis (NMA) to evaluate the effects of six main strategies on medical education, including case-based learning, problem-based learning, team-based learning, flipped classrooms, simulation-based education and bridge-in, objective, preassessment, participatory learning, postassessment and summary.

View Article and Find Full Text PDF

Recently, researchers have focused on preparing and studying proton exchange membranes. Metal-organic frameworks (MOFs) are candidates for composite membrane fillers due to their high crystallinity and structural characteristics, and Hf-based MOFs have attracted our attention with their high porosity and high stability. Therefore, in this study, Hf-based MOFs were doped into a cost-effective chitosan matrix as fillers to fabricate composite films having excellent proton conductivity (σ).

View Article and Find Full Text PDF

This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.

View Article and Find Full Text PDF

Assembling crystalline materials with high stability and high proton conductivity as a potential alternative to the Nafion membrane is a challenging topic in the field of energy materials. Herein, we concentrated on the creation and preparation of hydrazone-linked COFs with super-high stability to explore their proton conduction. Fortunately, two hydrazone-linked COFs, and , were solvothermally prepared by using benzene-1,3,5-tricarbohydrazide (Bth), 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp), and 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (Ta) as monomers.

View Article and Find Full Text PDF

Continuum robots with their inherent compliance provide the potential for crossing narrow unstructured workspace and safely grasping various objects. However, the display gripper increases the size of the robots, and therefore, it tends to get stuck in constrained environments. This paper proposes a versatile continuum grasping robot (CGR) with a concealable gripper.

View Article and Find Full Text PDF
Article Synopsis
  • Soft robotics can bend easily but struggle with fast, long-distance movement due to actuation limitations.
  • A new explosion-based soft robot design uses explosion pressure for quick axial extension, supported by a dynamic model that factors in combustion changes.
  • Experiments confirm the system's effectiveness, achieving 41-mm displacement with a 180 mg fuel mass, and the model shows high accuracy with just 1.5% average error.
View Article and Find Full Text PDF

Highly sensitive and reproducible analysis of samples containing low amounts of protein is restricted by sample loss and the introduction of contaminants during processing. Here, we report an All-in-One digital microfluidic (DMF) pipeline for proteomic sample reduction, alkylation, digestion, isotopic labeling and analysis. The system features end-to-end automation, with integrated thermal control for digestion, optimized droplet additives for sample manipulation and analysis, and an automated interface to liquid chromatography with tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF