Both constitutive and inducible immune mechanisms are employed by hosts for defense against infection. Constitutive immunity allows for a faster response, but it comes with an associated cost that is always present. This trade-off between speed and fitness costs leads to the theoretical prediction that constitutive immunity will be favored where parasite exposure is frequent.
View Article and Find Full Text PDFMetagenomic studies have demonstrated that viruses are extremely diverse and abundant in insects, but the difficulty of isolating them means little is known about the biology of these newly discovered viruses. To overcome this challenge in Drosophila, we created a cell line that was more permissive to infection and detected novel viruses by the presence of double-stranded RNA. We demonstrate the utility of these tools by isolating La Jolla virus (LJV) and Newfield virus (NFV) from several wild Drosophila populations.
View Article and Find Full Text PDFWhen an animal is infected, the expression of a large suite of genes is changed, resulting in an immune response that can defend the host. Despite much evidence that the sequence of proteins in the immune system can evolve rapidly, the evolution of gene expression is comparatively poorly understood. We therefore investigated the transcriptional response to parasitoid wasp infection in Drosophila simulans and D.
View Article and Find Full Text PDFWolbachia is a maternally transmitted bacterial symbiont that is estimated to infect approximately half of arthropod species. In the laboratory it can increase the resistance of insects to viral infection, but its effect on viruses in nature is unknown. Here we report that in a natural population of Drosophila melanogaster, individuals that are infected with Wolbachia are less likely to be infected by viruses.
View Article and Find Full Text PDF