Publications by authors named "Shu-zhi Bai"

Background: Endothelial dysfunction plays a crucial role in diabetic vascular complications. A decrease in hydrogen sulfide (H2S) levels is increasingly becoming a vital factor contributing to high glucose (HG)-induced endothelial dysfunction. Dopamine D1-like receptors (DR1) activation has important physiological functions in the cardiovascular system.

View Article and Find Full Text PDF

Objective: To investigate the role of calcium-sensing receptor (CaSR) in the decrease of cardiac function in type 2 diabetic rats.

Methods: Wistar rats were randomly divided into 3 groups including control, diabetic-4 week and diabetic-8 week groups. Rats in the diabetes group were fed with high-glucose and high-fat diet, and intraperitoneal injection of streptozocin (STZ,30 mg/kg) was conducted 4 weeks later to establish a type 2 diabetes model.

View Article and Find Full Text PDF

Background And Objectives: Calcium-sensing receptor (CaSR) is known to regulate hypoxia-induced pulmonary hypertension (HPH) and vascular remodeling via the phenotypic modulation of pulmonary arterial smooth muscle cells (PASMCs) in small pulmonary arteries. Moreover, autophagy is an essential modulator of VSMC phenotype. But it is not clear whether CaSR can regulate autophagy involving the phenotypic modulation under hypoxia.

View Article and Find Full Text PDF

Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms.

View Article and Find Full Text PDF

Objective: To observe the dynamic expression of calcium-sensing receptor(CaSR) in myocardium of diabetic rats.

Methods: Thirty male Wistar rats were randomly divided into 3 groups including control, diabetic-4 week and diabetic-8 week groups(n = 10). The type 2 diabetes mellitus models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month.

View Article and Find Full Text PDF

Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms.

View Article and Find Full Text PDF

Objective: To observe the effect of dopamine receptor (DR2) activation on hypoxia/reperfusion injury (HRI) in the neonatal rat cardiomyocytes, and to explore its mechanism.

Methods: The hypoxia/reperfusion (H/R) injury model was established in primarily cultured neonatal rat cardiomyocytes, and randomly assigned: control, H/R, bromocriptine (Bro) and haloperidol (Hal) groups. The cell apoptosis was detected using inverted microscope, transmission electron microscope and flow cytometry (FCM).

View Article and Find Full Text PDF

The calcium-sensing receptor (CaSR), a G protein coupled receptor, is involved in a number of physiological and pathological processes. Embryonic stem cells (ESCs) have a potential role to differentiate into all types of cells. Whether CaSR is functionally expressed in ESCs is unclear.

View Article and Find Full Text PDF

To observe the dynamic expression of calcium-sensing receptor (CaSR) in myocardium of diabetic rats and explore its role in diabetic cardiomyopathy (DCM), 40 male Wistar rats were randomly divided into 4 groups including control, diabetic-4 weeks, diabetic-8 weeks and spermine treatment groups (240 μM of spermine in drinking water). The type 2 Diabetes mellitus (DM) models were established by intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) after high-fat and high-sugar diet for one month. The echocardiographic parameters were measured, cardiac morphology was observed by electron microscope and HE staining.

View Article and Find Full Text PDF

Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs) and up-regulated in atherosclerotic lesion by various stimuli, such as oxidized low-density lipoprotein (oxLDL). Calcium-sensing receptor (CaSR) is also expressed in VSMCs, but it remains unclear whether CaSR is associated with overproduction of MMP-2 in VSMCs. In this study, the expression of MMP-2 was detected by real-time PCR and Western blot analysis, and the gelatinolytic activity of MMP-2 was measured using gelatin zymography.

View Article and Find Full Text PDF

1. Calcium-sensing receptors (CaSR) exist in a variety of tissues. In 2010, we first identified its functional expression in Buffalo rat liver (BRL) cells and demonstrated that the activation of CaSR was involved in an increased intracellular calcium through the Gq subunit-phospholipase C-inositol triphosphate pathway.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear.

View Article and Find Full Text PDF

Background: The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown.

Methods: The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence.

View Article and Find Full Text PDF

Activation of the calcium-sensing receptor (CaSR) leads to an increase of intracellular calcium concentration and alteration of cellular activities. High level of intracellular calcium is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs). However, whether the CaSR is expressed in PAMSCs and is related to the hypoxia-induced proliferation of PASMCs is unclear.

View Article and Find Full Text PDF

The expression and function of calcium-sensing receptor (CaSR) in differentiated THP-1 (human acute monocytic leukemia cell line) cells are unknown currently. This study investigated above-mentioned issues using TRAP staining, immunofluorescence staining, Western blotting, ELISA, and Laser Confocal Scanning Microscopy techniques. We found that CaSR protein was expressed, and mainly located in the membrane and cytoplasm in differentiated THP-1 cells.

View Article and Find Full Text PDF

Successful application of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL) has been attracting worldwide interest, but the exact mechanism for the action of As2O3 remains somewhat obscure. In the present work, we show for the first time that As2O3 facilitates the DIDS-sensitive anion transport activity of band 3 protein in red blood cells (RBCs) isolated from normal adults and APL patients. To elucidate the effect of As2O3 on band 3 protein, constructs encoding the full length of the band 3 transmembrane domain (mdb3) and its C-terminal deletion forms were transfected into yeast cells by a yeast display system.

View Article and Find Full Text PDF

Background & Objective: Membrane domain of band 3 protein (mdb3) mediates transmembrane exchange of chloride and bicarbonate, and regulates intracellular pH. It has been found recently that abnormality of CI(-)/HCO3(-) exchange, which mainly leads to change of intracellular pH, may be involved in cell proliferation and apoptosis. This study was to explore expression of band 3 protein on erythrocytes, and its impact on proliferation of K562 cells.

View Article and Find Full Text PDF