Zhongguo Dang Dai Er Ke Za Zhi
August 2020
Objective: To study the effect of dhfr gene overexpression on ethanol-induced abnormal cardiac and vascular development in zebrafish embryos and underlying mechanisms.
Methods: dhfr mRNA was transcribed in vitro and microinjected into zebrafish fertilized eggs to induce the overexpression of dhfr gene, and the efficiency of overexpression was verified. Wild-type zebrafish were divided into a control group, an ethanol group, and an ethanol+dhfr overexpression group (microinjection of 6 nL dhfr mRNA).
Background: Coronary artery aneurysms (CAAs) are a well-known complication of Kawasaki disease (KD), but there are no data on incidence or outcomes of systemic artery aneurysms (SAAs) in the current era.
Methods: From April 1, 2016, to March 31, 2019, we screened for SAAs in 162 patients with KD at risk for SAAs with magnetic resonance angiography or peripheral angiography and analyzed incidence and early outcomes of SAAs.
Results: Twenty-three patients had SAAs, demonstrating an incidence of 14.
Objective: This study investigated the role and mechanism of action of G protein-coupled estrogen receptor (GPER) in melanogenesis.
Methods: GPER expression was detected in the A375 human melanoma cell line and B16 mouse melanoma cell line. Cell proliferation, melanin content, tyrosinase (TYR) activity, cyclic adenosine monophosphate (cAMP) level, and TYR and microphthalmia-related transcription factor (MITF) expression were measured.
Congenital heart defects (CHDs) are one of the most common human birth defects worldwide. TBX20 is a crucial transcription factor for the development of embryonic cardiovascular system. Previous studies have demonstrated that mutations in the TBX20 coding region contribute to familial and sporadic CHD occurrence.
View Article and Find Full Text PDFBackground: Genome-wide association studies on components of the one-carbon metabolic pathway revealed that human vitamin B12 levels could be significantly influenced by variations in the fucosyltransferase 2 (FUT2), cubilin (CUBN), and transcobalamin-I (TCN1) genes. An altered vitamin B12 level is an important factor that disturbs the homeostasis of the folate metabolism pathway, which in turn can potentially lead to the development of congenital heart disease (CHD). Therefore, we investigated the association between the variants of vitamin B12-related genes and CHD in Han Chinese populations.
View Article and Find Full Text PDFHomocysteine is an independent risk factor for various cardiovascular diseases. There are two ways to remove homocysteine from embryonic cardiac cells: remethylation to form methionine or transsulfuration to form cysteine. Cystathionine β-synthase (CBS) catalyzes the first step of homocysteine transsulfuration as a rate-limiting enzyme.
View Article and Find Full Text PDFZhonghua Er Ke Za Zhi
December 2010
Objective: To construct the folic acid deficient model in zebrafish and observe the abnormal cardiac phenotypes, to find the optimal period for supplementing folic acid that can most effectively prevent the heart malformation induced by folic acid deficiency, and to investigate the possible mechanisms by which folic acid deficiency induces malformations of heart.
Method: The folic acid deficient zebrafish model was constructed by using both the folic acid antagonist methotrexate (MTX) and knocking-down dhfr (dihydrofolate reductase gene). Exogenous tetrahydrofolic acid rescue experiment was performed.
Zhonghua Er Ke Za Zhi
April 2007
Objective: DiGeorge/del22q11 syndrome is one of the most common genetic causes of outflow tract and aortic arch defects in human. DiGeorge/del22q11 is thought to involve an embryonic defect restricted to the pharyngeal arches and the corresponding pharyngeal pouches. Previous studies have evidenced that retinoic acid (RA) signaling is definitely indispensable for the development of the pharyngeal arches.
View Article and Find Full Text PDFBackground: Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of folic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos, investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2) and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations.
View Article and Find Full Text PDFObjective: To study the effect of methotrexate (MTX), a folic acid antagonist which can lead to folic acid deficient, on the cardiac development and on the expressions of BMP2b and HAS2 in zebrafish.
Methods: The zebrafish embryos at 6-48 hrs post fertilization (hpf) were treated with various concentrations of MTX (0.5 x 10(-3), 1.
Zhongguo Dang Dai Er Ke Za Zhi
December 2006