Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders.
View Article and Find Full Text PDFPurpose: Photoreceptor degeneration in the retina is a major cause of blindness in humans. Elucidating mechanisms of degenerative and neuroprotective pathways in photoreceptors should afford identification and development of therapeutic strategies.
Methods: We used mouse genetic models and improved methods for retinal explant cultures.
Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice.
View Article and Find Full Text PDFNitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival.
View Article and Find Full Text PDFBackground: Nitric oxide (NO) is a pleiotropic messenger molecule. The multidimensional actions of NO species are, in part, mediated by their redox nature. Oxidative posttranslational modification of cysteine residues to regulate protein function, termed S-nitrosylation, constitutes a major form of redox-based signaling by NO.
View Article and Find Full Text PDF[Briefly describe the contents of the Data in Brief article. Tell the reader the repository and reference number for the data in the abstract to.] The myocyte enhancer factor 2 (MEF2) family of transcription factors is highly expressed in the brain, and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs.
View Article and Find Full Text PDFRedox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO) can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions.
View Article and Find Full Text PDFMutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs).
View Article and Find Full Text PDFSynaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-β peptide (Aβ) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons.
View Article and Find Full Text PDFS-Nitrosylation is a redox-mediated posttranslational modification that regulates protein function via covalent reaction of nitric oxide (NO)-related species with a cysteine thiol group on the target protein. Under physiological conditions, S-nitrosylation can be an important modulator of signal transduction pathways, akin to phosphorylation. However, with aging or environmental toxins that generate excessive NO, aberrant S-nitrosylation reactions can occur and affect protein misfolding, mitochondrial fragmentation, synaptic function, apoptosis or autophagy.
View Article and Find Full Text PDFHIV/gp120 transgenic mice manifest neuropathological features similar to HIV-associated neurocognitive disorders (HAND) in humans, including astrogliosis, microglia activation, and decreased neuronal synapses. Here, proteomic screening of synaptosomes from HIV/gp120 transgenic mice was conducted to determine potential neuronal markers and drug targets associated with HAND. Synaptosomes from 13 month-old wild-type (wt) and HIV/gp120 transgenic mouse cortex were subjected to tandem mass tag (TMT) labeling and subsequent analysis using an LTQ-Orbitrap mass spectrometer in pulsed-Q dissociation (PQD) mode for tandem mass spectrometry (MS/MS).
View Article and Find Full Text PDFX-linked inhibitor of apoptosis (XIAP) is a potent antagonist of caspase apoptotic activity. XIAP also functions as an E3 ubiquitin ligase, targeting caspases for degradation. However, molecular pathways controlling XIAP activities remain unclear.
View Article and Find Full Text PDFHuntington's disease is caused by an expanded CAG repeat in the gene encoding huntingtin (HTT), resulting in loss of striatal and cortical neurons. Given that the gene product is widely expressed, it remains unclear why neurons are selectively targeted. Here we show the relationship between synaptic and extrasynaptic activity, inclusion formation of mutant huntingtin protein (mtHtt) and neuronal survival.
View Article and Find Full Text PDFEmerging evidence suggests that myocyte enhancer factor 2 (MEF2) transcription factors act as effectors of neurogenesis in the brain, with MEF2C the predominant isoform in developing cerebrocortex. Here, we show that conditional knockout of Mef2c in nestin-expressing neural stem/progenitor cells (NSCs) impaired neuronal differentiation in vivo, resulting in aberrant compaction and smaller somal size. NSC proliferation and survival were not affected.
View Article and Find Full Text PDFCell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes.
View Article and Find Full Text PDFImpaired adult neurogenesis has been observed in several neurodegenerative diseases, including human immunodeficiency virus (HIV-1)-associated dementia (HAD). Here we report that the HIV-envelope glycoprotein gp120, which is associated with HAD pathogenesis, inhibits proliferation of adult neural progenitor cells (aNPCs) in vitro and in vivo in the dentate gyrus of the hippocampus of HIV/gp120-transgenic mice. We demonstrate that HIV/gp120 arrests cell-cycle progression of aNPCs at the G1 phase via a cascade consisting of p38 mitogen-activated protein kinase (MAPK) --> MAPK-activated protein kinase 2 (a cell-cycle checkpoint kinase) --> Cdc25B/C.
View Article and Find Full Text PDFElectrophilic compounds are a newly recognized class of redox-active neuroprotective compounds with electron deficient, electrophilic carbon centers that react with specific cysteine residues on targeted proteins via thiol (S-)alkylation. Although plants produce a variety of physiologically active electrophilic compounds, the detailed mechanism of action of these compounds remains unknown. Catechol ring-containing compounds have attracted attention because they become electrophilic quinones upon oxidation, although they are not themselves electrophilic.
View Article and Find Full Text PDFCells attaching to an extracellular matrix through integrins flatten out (spread) on the matrix, eliciting cellular signals needed for survival. We show that the shape of the nucleus changes and the nuclear calcium level increases in spreading cells. Moreover, cell spreading and osmotic stretching of isolated nuclei cause release of perinuclear Ca(2+), and patch clamping of nuclei reveals stretch-activated Ca(2+) permeable channels.
View Article and Find Full Text PDFThe silencer factor NRSF/REST has been reported to restrict expression to neurons of a variety of genes, including that encoding NMDA receptor subunit type 1 (NR1), by suppressing transcription in nonneuronal cells. However, we recently reported that in addition to the absence of NRSF/REST-binding activity, another neuron-specific mechanism is necessary for high level expression of the NR1 gene in neurons. In this study, we explored the mechanism of induction of NR1 promoter activity during neuronal differentiation of the P19 cell line.
View Article and Find Full Text PDFMyocyte enhancer factor-2 (MEF2) transcription factors are activated by p38 mitogen-activated protein kinase during neuronal and myogenic differentiation. Recent work has shown that stimulation of this pathway is antiapoptotic during development but proapoptotic in mature neurons exposed to excitotoxic or other stress. We now report that excitotoxic (N-methyl-D-aspartate) insults to mature cerebrocortical neurons activate caspase-3, -7, in turn cleaving MEF2A, C, and D isoforms.
View Article and Find Full Text PDF